Have a personal or library account? Click to login
Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology Cover

Investigating the antibacterial potential of agarose nanoparticles synthesized by nanoprecipitation technology

Open Access
|Jun 2016

References

  1. 1. Ansari, S.A. & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30(3), 512–523. DOI: 10.1016/j.biotechadv.2011.09.005.10.1016/j.biotechadv.2011.09.005
  2. 2. Chibber, S., Ansari, S.A. & Satar, R. (2013). New vision to CuO, ZnO, and TiO2 nanoparticles: their outcome and effects. J. Nan. Res. 15(4), 1–13. DOI: 10.1007/s11051-013-1492-x.10.1007/s11051-013-1492-x
  3. 3. Rao, J.P. & Geckeler, K.E. (2011). Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 36(7), 887–913. DOI: 10.1016/j.progpolymsci.2011.01.001.10.1016/j.progpolymsci.2011.01.001
  4. 4. Nitta, S.K. & Numata, K. (2013). Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci. 14(1), 1629–1654. DOI: 10.3390/ijms14011629.10.3390/ijms14011629
  5. 5. Nair, L.S. & Laurencin C.T. (2007). Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.10.1016/j.progpolymsci.2007.05.017
  6. 6. Zhang, H., Wang, D., Butler, R., Campbell, N.L., Long, J., Tan, B., Duncalf, D.J., Foster, A.J., Hopkinson, A., Taylor, D., Angus, D., Cooper, AI. & Rannard, S.P. (2008). Formation and enhanced biocidal activity of water dispersable organic nanoparticles. Nat. Nanotechnol. 3(3), 506–511. DOI: 10.1038/nnano.2008.188.10.1038/nnano.2008.188
  7. 7. Wan, W. & Yeow, J.T.W. (2012). Antibacterial properties of poly (quaternary ammonium) modified gold and titanium dioxide nanoparticles. J. Nan. Nanotechnol. 12(6), 4601–4606. DOI: http://dx.doi.org/10.1166/jnn.2012.6147.
  8. 8. Blackburn, C.D. & Davies, A.R. (1994). Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods. Int. J. Food Microbiol. 24(1–2), 125–136. DOI: 10.1016/0168-1605(94)90112-0.10.1016/0168-1605(94)90112-0
  9. 9. Rizzello, L., Cingolani, R. & Pompa, P.P. (2013). Nanotechnology tools for antibacterial materials. Nanomed. 8(5), 807–821. DOI: 10.2217/nnm.13.63.10.2217/nnm.13.63
  10. 10. Denyer, S.P. & Stewart, G.S.A.B. (1998). Mechanisms of action of disinfectants. Int. Biodet. Biodegrad. 41(3–4), 261–268. DOI: 10.1016/S0964-8305(98)00023-7.10.1016/S0964-8305(98)00023-7
  11. 11. Chen, C.Z., Beck-Tan, N.C. & Cooper, S.L. (1999). Incorporation of dimethyl-dodecyl ammonium chloride functionalities onto poly(propylene imine) dendrimers significantly enhances their antibacterial properties. Chem. Commun. 16(5), 1585–1586. DOI: 10.1016/S02684-8305(99)00048-7.
  12. 12. Chen, C.Z., Beck-Tan, N.C., Dhurjati, P.T.K., van Dyk, R.A., Larossa, P. & Cooper, S.L. (2000). Quaternary ammonium functionalized poly(propylene imine) dendrimers as effective antimicrobials: structure-activity studies. Biomacromol. 1(3), 473–480. DOI: 10.1021/bm0055495.10.1021/bm0055495
  13. 13. Ioannou, C.J., Hanlon, G.W. & Denyer, S.P. (2007). Action of disinfectant quaternary ammonium compounds against Staphylococcus. Antimicrob. Ag. Chemother. 51(1), 296–306. DOI: 10.1128/AAC.00375-06.10.1128/AAC.00375-06
  14. 14. McBain, A.J., Ledder, R.G., Moore, L.E., Catrenich C. & Gilbert, P. (2004). Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 70(6), 3449–3456. DOI: 10.1128/AEM.70.6.3449-3456.2004.10.1128/AEM.70.6.3449-3456.2004
  15. 15. Wang, N., Wu, X.S. & Mesiha, M. (1995). A new method for preparation of protein-loaded agarose nanoparticles. Pharmacol. Res. 12(3), 257. DOI: 10.1016/j.nano.2005.12.003.10.1016/j.nano.2005.12.003
  16. 16. Wang, N. & Wu, X.S. (1997). Preparation and characterization of agarose hydrogel nanoparticles for protein and peptide drug delivery. Pharm. Dev. Technol. 2(2), 135–142. DOI: 10.3109/10837459709022618.10.3109/10837459709022618
  17. 17. Kunkel, J. & Asuri, P. (2014). Function, structure and stability of enzymes confined in agarose gels. Plos One 9(5), e86785. DOI: 10.1371/journal.pone.0086785.10.1371/journal.pone.0086785
  18. 18. Zhang, X., Yan, S., Tyagi, R.D. & Surampalli, R.Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4), 489–494. DOI: 10.1016/j.chemosphere.2010.10.023.10.1016/j.chemosphere.2010.10.023
  19. 19. Doktycz, M.J., Sullivan, C.J., Hoyt, P.R., Pelletier, D.A., Wud, S. & Allison, D.P. (2003). AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97(1–4), 209–216. DOI: 10.1016/S0304-3991(03)00045-7.10.1016/S0304-3991(03)00045-7
  20. 20. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. & Fievet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6(4), 866–870. DOI: 10.1021/nl052326h.10.1021/nl052326h16608300
  21. 21. Kim, M.H., Yamayoshi, I., Mathew, S., Liln, H., Nayfach, J. & Simon, S.I. (2013). Magnetic nanoparticle targeted hyperthermia of cutaneous Staphylococcus aureus infection. Ann. Biomed. Eng. 41(3), 598–609. DOI: 10.1007/s10439-012-0698-x.10.1007/s10439-012-0698-x374055723149904
Language: English
Page range: 9 - 12
Published on: Jun 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Rukhsana Satar, Syed Ahmed Iizhar, Mahmood Rasool, Peter Natesan Pushparaj, Shakeel Ahmed Ansari, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.