Have a personal or library account? Click to login
Preparation, characterization and rheological behavior of chitosan nanocapsule emulsion encapsulated tuberose fragrance Cover

Preparation, characterization and rheological behavior of chitosan nanocapsule emulsion encapsulated tuberose fragrance

Open Access
|Jun 2016

References

  1. 1. Zhu, G.Y., Xiao, Z.B., Zhou, R.J. & Zhu. Y.L. (2014). Study of production and pyrolysis characteristics of sweet orange flavor-β-cyclodextrin inclusion complex. Carbohyd. Polym. 105, 75–80. DOI: 10.1016/j.carbpol.2014.01.060.10.1016/j.carbpol.2014.01.060
  2. 2. Chen, C.K., Law, W.C., Aalinkeelm, R., Yu, Y., Nair, B., Wu, J., Mahajan, S., Reynolds, J.L., Li, Y., Lai, C.K., Tzanakakis, E.S., Schwartz, S.A., Prasad, P.N. & Cheng, C. (2014). Biodegradable cationic polymeric nanocapsules for overcoming multidrug resistance and enabling drug–gene co-delivery to cancer cells. Nanoscale 6, 1567–1572. DOI: 10.1039/C3NR04804G.10.1039/C3NR04804G
  3. 3. El-Gogary, R.I., Rubio, N., Wang, J.T.W., Al-Jamal, W. T., Bourgognon, M., Kafa, H., Naeem, M., Klippstein, R., Abbate, V., Leroux, F., Bals, S., Tendeloo, G.V., Kamel, A.O., Awad, G.A.S., Mortada, N.D. & Al-Jamal, K.T. (2014). polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS Nano 8, 1384–1401. DOI: 10.1021/nn405155b.10.1021/nn405155b
  4. 4. Xiao, Z.B., Liu, W.L., Zhu, G.Y., Zhou, R.J. & Niu, Y.W. (2014). Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. Flavour Fragr. J. 29, 166–172. DOI: 10.1002/ffj.3192.10.1002/ffj.3192
  5. 5. Alves, N.M. & Mano, J.F. (2008). Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 43, 401–414. DOI: 10.1016/j.ijbiomac.2008.09.007.10.1016/j.ijbiomac.2008.09.007
  6. 6. Li, L.H., Deng, J.C., Deng, H.R., Liu, Z.L. & Xin, L. (2010). Synthesis and characterization of chitosan/ZnO nanoparticle composite membranes. Carbohydr. Res. 345, 994–998. DOI: 10.1016/j.carres.2010.03.019.10.1016/j.carres.2010.03.019
  7. 7. Okamoto, Y., Kawakami, K., Miyatake, K., Morimoto, M., Shigemasa, Y. & Minami, S. (2002). Analgesic effects of chitin and chitosan. Carbohyd. Polym. 49, 249–252. DOI: 10.1016/S0144-8617(01)00316-2.10.1016/S0144-8617(01)00316-2
  8. 8. Anitha, A., Deepa, N., Chennazhi, K. P., Nair, S. V., Tamura, H. & Jayakumar, R. (2011). Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohyd. Polym. 83, 66–73. DOI: 10.1016/j.carbpol.2011.01.005.10.1016/j.carbpol.2011.01.005
  9. Zhang, Y.Q., Chen, J.J., Zhang, Y.D., Pan, Y.F., Zhao, J.F., Ren, L.F., Liao, M.M., Hu, Z.Y., Kong, L. & Wang, J.W. (2007). A novel PEGylation of chitosan nanoparticles for gene delivery. Biotech. Appl Biochem. 46, 197–204. DOI: 10.1042/BA20060163.10.1042/BA2006016317147512
  10. 10. Moura, M.R., Aouada, F.A., Avena-Bustillos, R.J., McHugh, T.H., Krochta, J.M. & Mattoso, L.H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. J. Food Eng. 92, 448–453. DOI: 10.1016/j.jfoodeng.2008.12.015.10.1016/j.jfoodeng.2008.12.015
  11. 11. Jayakumar, R., Menon, D., Manzoor, K., Nair, S.V. & Tamura, H. (2010). Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohyd. Polym. 82, 227–232. DOI: 10.1016/j.carbpol.2010.04.074.10.1016/j.carbpol.2010.04.074
  12. 12. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M. V., Li, D. & Alvarez, P.J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602. DOI: 10.1016/j.watres.2008.08.015.10.1016/j.watres.2008.08.01518804836
  13. 13. Kim, D.G., Jeong, Y.I., Choi, C., Roh, S.H., Kang, S.K., Jang, M.K., & Nah, J.W. (2006). Retinol-encapsulated low molecular water-soluble chitosan nanoparticles. Int. J. Phytoremediat. 319, 130–138. DOI: 10.1016/j.ijpharm.2006.03.040.10.1016/j.ijpharm.2006.03.04016713152
  14. 14. Songsurang, K., Praphairaksit, N., Siraleartmukul, K., & Muangsin, N. (2011). Electrospray fabrication of doxorubicin-chitosan-tripolyphosphate nanoparticles for delivery of doxorubicin. Arch. Pharm. Res. 34, 583–592. DOI: 10.1007/s12272-011-0408-5.10.1007/s12272-011-0408-521544723
  15. 15. Xu, Y. & Hanna, M.A. (2007). Electrosprayed bovine serum albumin-loaded tripolyphosphate cross-linked chitosan capsules: synthesis and characterization. J. Microencapsul. 24, 143–151. DOI: 10.1080/02652040601058434.10.1080/0265204060105843417454425
  16. 16. Chein, R. & Huang, G. (2005). Analysis of microchannel heat sink performance using nanofluids. Appl. Therm. Eng. 25, 3104–3114. DOI: 10.1016/j.applthermaleng.2005.03.008.10.1016/j.applthermaleng.2005.03.008
  17. 17. Nguyen, C.T., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. & Angue, M.H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids – Hysteresis phenomenon. Int. J. Heat Fluid Fl. 28, 1492–1506. DOI: 10.1016/j.ijheatfluidflow.2007.02.004.10.1016/j.ijheatfluidflow.2007.02.004
  18. 18. Hobbie, E.K. (2010). Shear rheology of carbon nanotube suspensions. Rheol. Acta 49, 323–334. DOI: 10.1007/s00397-009-0422-4.10.1007/s00397-009-0422-4
  19. 19. Penkavova, V., Tihon, J. & Wein, O. (2011). Stability and rheology of dilute TiO2-water nanofluids. Nanoscale Res. Lett. 6, 273–276. DOI: 10.1186/1556-276X-6-273.10.1186/1556-276X-6-273321133721711783
  20. 20. Chen, H., Ding, Y., Lapkin, A. & Fan, X. (2009). Rheological behaviour of ethylene glycoltitanate nanotube nanofluids. J. Nanopart. Res. 11, 1513–1520. DOI: 10.1007/s11051-009-9599-9.10.1007/s11051-009-9599-9
  21. 21. Mahbubul, I.M., Saidur, R. & Amalina, M.A. (2012). Latest developments on the viscosity of nanofluids. Int. J. Heat Mass Tran. 55, 874–885. DOI: 10.1016/j.ijheatmasstransfer.2011.10.021.10.1016/j.ijheatmasstransfer.2011.10.021
  22. 22. Tseng, W.J., & Chen, C.N. (2006). Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41, 1213–1219. DOI: 10.1007/s10853-005-3659-z.10.1007/s10853-005-3659-z
  23. 23. Wang, Y., Yang, X.P., Liu, W.T., Zhang, F., Cai, Q. & Deng, X.L. (2013). Controlled release behaviour of protein-loaded microparticles prepared via coaxial or emulsion electrospray. J. Microencapsul. 30, 490–497. DOI: 10.3109/02652048.2012.752537.10.3109/02652048.2012.752537370988523346923
  24. 24. Luckham, P.F. & Ukeje, M.A. (1999). Effect of particle size distribution on the rheology of dispersed systems. J. Col. Inter. Sci. 220, 347–356. DOI: 10.1006/jcis.1999.6515.10.1006/jcis.1999.651510607451
  25. 25. Stoica, R., Şomoghi, R. & Ion, R.M. (2013). Preparation of chitosan-tripolyphosphate nanoparticles for the encapsulation of polyphenols extracted from rose hips. Dig. J. Nanomater. Bios. 8, 955–963.
  26. 26. Hu, B., Pan, C.L., Sun, Y., Hou, Z.J., Ye, H. & Zeng, X.X. (2008). Optimization of Fabrication Parameters To Produce Chitosan – Tripolyphosphate Nanoparticles for Delivery of Tea Catechins. J. Agric. Food Chem. 56, 7451–7458. DOI: 10.1021/jf801111c.10.1021/jf801111c18627163
  27. 27. Papadimitriou, S., Bikiaris, D. & Avgoustakis, K. (2008). Chitosan nanoparticles loaded with dorzolamide and pramipexole. Carbohyd. Polym. 73, 44–54. DOI: 10.1016/j.carbpol.2007.11.007.10.1016/j.carbpol.2007.11.007
Language: English
Page range: 1 - 8
Published on: Jun 30, 2016
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Zuobing Xiao, Erqin Wang, Guangyong Zhu, Rujun Zhou, Yunwei Niu, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.