Have a personal or library account? Click to login
Kinetic study of CO2 reaction with CaO by a modified random pore model Cover

Kinetic study of CO2 reaction with CaO by a modified random pore model

Open Access
|Apr 2016

References

  1. 1. Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van Der Linden, P.J., Dai, X., Maskell, K. & Johnson, C., Climate change 2001: the scientific basis, Cambridge University Press, UK, 2001.
  2. 2. Dean, C., Blamey, J., Florin, N., Al-Jeboori & M., Fennell, P. (2011). The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production. Chem. Eng. Res. Des. 89, 836–855. DOI: 10.1016/j.cherd.2010.10.013.10.1016/j.cherd.2010.10.013
  3. 3. Abanades, J.C., Grasa, G., Alonso, M., Rodriguez, N., Anthony, E.J. & Romeo, L.M. (2007). Cost structure of a postcombustion CO2 capture system using CaO. Environ. Sci. Technol. 41, 5523–5527. DOI: 10.1021/es070099a.10.1021/es070099a
  4. 4. Abanades, J.C., Anthony, E.J., Wang, J. & Oakey, J.E. (2005). Fluidized bed combustion systems integrating CO2 capture with CaO. Environ. Sci. Technol. 39, 2861–2866. DOI: 10.1021/es0496221.10.1021/es0496221
  5. 5. Fang, F., Li, Z.S. & Cai, N.S. (2009). Continuous CO2 capture from flue gases using a dual fluidized bed reactor with calcium-based sorbent. Ind. Eng. Chem. Res. 48, 11140–11147. DOI: 10.1021/ie901128r.10.1021/ie901128r
  6. 6. Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K. (1999). A twin fluid-bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. Des. 77, 62–68. DOI: 10.1205/026387699525882.10.1205/026387699525882
  7. 7. Bhatia, S.K. & Perlmutter, D.D. (1983). Effect of the product layer on the kinetics of the CO2-lime reaction, AIChE J. 29, 79–86. DOI: 10.1002/aic.690290111.10.1002/aic.690290111
  8. 8. Khoshandam, B., Kumar, R.V. & Allahgholi, L. (2010) Mathematical modeling of CO2 removal using carbonation with CaO: The grain model. Kor. J. Chem. Eng. 27, 766–776. DOI: 10.1007/s11814-010-0119-5.10.1007/s11814-010-0119-5
  9. 9. Sun, P., Grace, J.R., Lim, C.J., Anthony, E.J. (2008). Determination of intrinsic rate constants of the CaO–CO2 reaction. Chem. Eng. Sci. 63, 47–56. DOI: 10.1016/j.ces.2007.08.055.10.1016/j.ces.2007.08.055
  10. 10. Sun, P., Grace, J.R., Lim, C.J. & Anthony, E.J. (2008). A discrete-pore-size-distribution-based gas–solid model and its application to the CaO-CO2 reaction. Chem. Eng. Sci. 63, 57–70. DOI: 10.1016/j.ces.2007.08.055.10.1016/j.ces.2007.08.055
  11. 11. Nitsch, W. (1962). Über die Druckabhängigkeit der CaCO3-Bildung aus dem Oxyd. Z. Elektrochem 66, 703–708. OI: 10.1002/bbpc.19620660821.
  12. 12. Dennis, J.S. & Hayhurst, A.N. (1987). The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds. Chem. Eng. Sci. 42, 2361–2372. DOI: 10.1016/0009-2509(87)80110-0.10.1016/0009-2509(87)80110-0
  13. 13. Grasa, G., Murillo, R., Alonso, M., Abanades, J.C. (2009). Application of the random pore model to the carbonation cyclic reaction. AIChE J. 55, 1246–1255. DOI: 10.1002/aic.11746.10.1002/aic.11746
  14. 14. Bhatia, S.K. & Perlmutter, D.D. (1981). A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE J. 27, 247–254. DOI: 10.1002/aic.690270211.10.1002/aic.690270211
  15. 15. Wakao, N. & Smith, J.M. (1962). Diffusion in catalyst pellets. Chem. Eng. Sci. 17, 825–834. DOI: 10.1016/0009-2509(62)87015-8.10.1016/0009-2509(62)87015-8
  16. 16. Slattery, J.C. & Bird, R.B. (1958). Calculation of the diffusion coefficient of dilute gases and of the self-diffusion coefficient of dense gases. AIChE J. 4, 137–142. DOI: 10.1002/aic.690040205.10.1002/aic.690040205
  17. 17. Smith, J.M., Chemical engineering kinetics, McGraw-Hill, 1981.
  18. 18. Barker, R. (1973). The reversibility of the reaction CaCO3, CaO+CO2 J. Appl. Chem. Biotechnol. 23, 733–742. DOI: 10.1002/jctb.5020231005.10.1002/jctb.5020231005
  19. 19. Kyaw, K., Kanamori, M., Matsuda, H., Hasatani, M. (1996). Study of Carbonation Reactions of Ca-Mg Oxides for High Temperature Energy Storage and Heat Transformation. J. Chem. Eng. Jpn. 29, 112–118. DOI: 10.1252/jcej.29.112.10.1252/jcej.29.112
  20. 20. Mess, D., Sarofim, A.F. & Longwell, J.P. (1999). Product layer diffusion during the reaction of calcium oxide with carbon dioxide. Energ Fuels 13, 999–1005. DOI: 10.1021/ef980266f.10.1021/ef980266f
  21. 21. Stendardo, S. & Foscolo, P.U. (2009). Carbon dioxide capture with dolomite: A model for gas–solid reaction within the grains of a particulate sorbent. Chem. Eng. Sci. 64, 2343–2352. DOI: 10.1016/j.ces.2009.02.009.10.1016/j.ces.2009.02.009
  22. 22. Anderson, T.F. (1969). Self-diffusion of carbon and oxygen in calcite by isotope exchange with carbon dioxide. J. Geophys. Res. 74, 3918–3932. DOI: 10.1029/JB074i015p03918.10.1029/JB074i015p03918
Language: English
Page range: 93 - 98
Published on: Apr 4, 2016
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 S.M.M. Nouri, H. Ale Ebrahim, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.