2. Mosier, A.R., Syers, J.K. & Freney, J.R. (2004). Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, St. Louis, MI: Island Press.
3. Brown, L.R. (1999). Feeding nine billion. In L.R. Brown, C. Flavin, H. French (Eds.), State of the world: A Worldwatch Institute report on progress toward a sustainable society, New York: W.W. Norton & Company.
6. van Cleemput, O., Zapata, F. & Vanlauwe, B. (2008). Use of tracer technology in mineral fertilizer management. In: Guide. Nitr. Managem. Agric. Syst., Vienna: IAEA.
7. Dobermann, A. (2005). Nitrogen use efficiency - state of the art. In: Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers, Frankfurt: IFA.
9. Fan, X., Li, F., Liu, F. & Kumar, D. (2004). Fertilization with a new type of coated urea: Evaluation for nitrogen efficiency and yield in winter wheat. J. Plant Nutr., 27, 853–865. DOI: 10.1081/PLN-120030675.10.1081/PLN-120030675
11. Shaviv, A. & Mikkelsen, R.I. (1993). Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation – a review. Fert. Res., 35, 1–12. DOI: 10.1007/BF00750215.10.1007/BF00750215
21. Smith, J.E. & Beutler, E. (1966). Methaemoglobin formation and reduction in man and various animal species. Am. J. Physiol., 210(2), 347–350.10.1152/ajplegacy.1966.210.2.347
22. Newbould, P. (1989). The use of nitrogen fertilizer in agriculture. Where do we go practically and ecologically? Plant and Soil. 115, 297–311. DOI: 10.1007/BF02202596.10.1007/BF02202596
25. Sharpley, A.N. & Menzel, R.G. (1987). The impact of soil and fertiliser phosphorus on the environment. Adv. Agron., 41, 297–324.10.1016/S0065-2113(08)60807-X
28. Chien, S.H., Prochnow, L.I. & Cantarella, H. (2009). Recent developments of fertilizer production and use to improve nutrient efficiency and minimize environmental impacts. Adv. Agron., 102, 267–322. DOI: 10.1016/S0065-2113(09)01008-6.10.1016/S0065-2113(09)01008-6
32. Matson, P.A., Naylor, R., Ortiz-Monasterio, I. (1998). Integration of environmental, agronomic and economic aspects of fertilizer management. Science 280, 112–115. DOI: 10.1126/science.280.5360.112.10.1126/science.280.5360.1129525856
42. Lunt, O.R. & Clark, S.B. (1969). Properties and value of 1,1-diureido isobutane (IBDU) as a long-lasting nitrogen fertilizer. J. Agric. Food Chem., 17(6), 1269–1271. DOI: 10.1021/jf60166a053.10.1021/jf60166a053
52. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 1: The encapsulation of urea fertilizer by rubber: processing and vulcanization procedures, Plast. Rubber Compos. Process. Appl. 12(3), 129–134.
53. Hepburn, C. & Arizal, R. (1989). A controlled-release urea fertilizer. Part 2: Preparation of the rubber-urea matrix and the split-feeding mixing technique. Plast. Rubber Compos. Process. Appl. 12(3), 135–140.
55. Hassan, Z.A., Young, S.D., Hepburn, C. & Arizal, R. (1990). An evaluation of urea-rubber matrices as slow-release fertilizers. Fert. Res. 22, 63–70. DOI: 10.1007/BF01116180.10.1007/BF01116180
57. Helaly, F.M. & Abo-Elela, S.I. (1990). Protection of surface water from eutrophication via controlled release of phosphate fertilizer. J. Control. Rel., 12(1), 39–44. DOI: 10.1016/0168-3659(90)90181-R.10.1016/0168-3659(90)90181-R
60. Abd El-Kader, A.A. & Attia, M. (2006). Nutrients release and biological aspects of butadiene styrene - fertilizer mixtures. Egypt. J. Soil Sci. 46(1), 69–77.
68. Matynia, A., Hutnik, N., Piotrowski, K., Wierzbowska, B. & Koralewska, J. (2009). Recovery of phosphate ions by continuous precipitation and crystallization of struvite in DTM type crystallizer with jet pump. Progr. Environ. Sci. Technol. 2, 986–993.
70. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical route for synthesizing KMgPO4 and NH4MgPO4 for application as slow-release fertilizers. Ind. Eng. Chem. Res. 49(5), 2213–2216. DOI: 10.1021/ie901780v.10.1021/ie901780v
72. Zhang, Q., Solihin & Saito, F. (2009). Mechanochemical synthesis of slow-release fertilizers through incorporation of alumina composition into potassium/ammonium phosphates. J. Amer. Ceram. Soc. 92(12), 3070–3073. DOI: 10.1111/j.1551-2916.2009.03291.x.10.1111/j.1551-2916.2009.03291.x
73. Solihin, Zhang, Q., Tongamp, W. & Saito, F. (2010). Mechanochemical synthesis of kaolin-KH2PO4 and kaolin-NH4H2PO4 complexes for application as slow release fertilizer. Powder Technol. 212(2), 354–358. DOI: 10.1016/j.powtec.2011.06.012.10.1016/j.powtec.2011.06.012
74. Yuan, W., Solihin, Zhang, Q., Kano, J. & Saito, F. (2014). Mechanochemical formation of K-Si-Ca-O compound as a slow-release fertilizer. Powder Technol. 260, 22–26. 10.1016/j.powtec.2014.03.072">http://dx.doi.org/10.1016/j.powtec.2014.03.072
75. Bolan, N.S., Hedley, M.J. & Loganathan, P. (1993). Preparation, forms and properties of controlled-release phosphate fertilizers. Fert. Res. 35, 13–24. DOI: 10.1007/BF00750216.10.1007/BF00750216
77. Skut, J., Hoffmann, J., Hoffmann, K. (2011). Evaluation of the progress of sulfuric acid acidulation of phosphate rocks. Przem. Chem. 90(5), 1024-1028.
78. Skut, J., Hoffmann, J. & Hoffmann, K. (2012). Temperature and moisture influence on the curing process of PAPR type fertilizer products. Pol. J. Chem. Technol. 14(3), 77–82. DOI: 10.2748/v10026-012-0106-1.
80. Ranawat, P., Kumar, K.M. & Sharma, N.K. (2009). A process for making slow-release phosphate fertilizer from low-grade rock phosphate and siliceous tailings by fusion with serpentinite. Curr. Sci. 96(6), 843–848.
81. Guimond, R.J. & Hardin, J.M. (1989). Radioactivity released from phosphate-containing fertilizers and from gypsum. Int. J. Radiat. Appl. Instrum. Part C, 34(2), 309–315. DOI: 10.1016/1359-0197(89)90238-5.10.1016/1359-0197(89)90238-5
84. Roselli, C., Desideri, D. & Meli, M.A. (2009). Radiological characterization of phosphate fertilizers: Comparison between alpha and gamma spectrometry. Microchem. J. 91(2), 181–186. DOI: 10.1016/j.microc.2008.10.003.10.1016/j.microc.2008.10.003
85. Wacławska, I. & Szumera, M. (2003), Thermal analysis of glasses for proecological applications. J. Thermal Anal. Calorim. 72(3), 1065–1072.10.1023/A:1025059424522
86. Wacławska, I. & Szumera, M. (2009). Reactivity of silicate-phosphate glasses in soil environment. J. Alloys Compd. 468(1–2), 246–253. DOI: 10.1023/A:102505942452210.1023/A:1025059424522
87. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2013). Structural studies of copper-containing multicomponent glasses from the SiO2-P2O5-K2O-CaO-MgO system. Vib. Spectrosc. 65, 44–49. 10.1016/j.vibspec.2012.11.013">http://dx.doi.org/10.1016/j.vibspec.2012.11.013
88. Sułowska, J., Wacławska, I. & Olejniczak, Z. (2014). Effect of glass composition on the interactions between structural elements in Cu-containing silicate-phosphate glasses. J. Thermal Anal. Calorim. 116(1), 51–59. DOI: 10.1007/s10973-014-3705-7.10.1007/s10973-014-3705-7
89. Mandlule, A., Doehler, F., van Wuellen, L., Kasuga, T. & Brauer, D.S. (2014). Changes in structure and thermal properties with phosphate content of ternary calcium sodium phosphate glasses. J. Non-Cryst. Solids 392–393, 31–38. DOI: 10.1016/j.jnoncrysol.2014.04.002.10.1016/j.jnoncrysol.2014.04.002
90. Qiu, Q. & Hlavacek, V. (2010). Energy estimation on CRN process of fly ash as a slow-release nitrogen fertilizer. Ind. Eng. Chem. Res. 49(12), 5939–5944. DOI: 10.1021/ie100391y.10.1021/ie100391y
92. Yao, Y., Hamada, E., Sato, K., Akiyama, T. & Yoneyama, T. (2014). Identification of the major constituents of fused potassium silicate fertilizer. ISIJ Int. 54(4), 990–993. DOI: 10.2355/isijinternational.54.990">http://dx.doi.org/10.2355/isijinternational.54.990.