Have a personal or library account? Click to login
Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell Cover

Simulation of the steady-state behaviour of a new design of a single planar Solid Oxide Fuel Cell

Open Access
|Apr 2016

References

  1. 1. Ullah, K.R., Akikur, R.K., Ping, H.W., Saidur, R., Hajimolana, S.A. & Hussain, M.A. (2015). An experimental investigation on a single tubular SOFC for renevable energy based cogeneration system, Energy Conversion and Management 94, 139–149. DOI: 10.1016/j.enconman.2015.01.055.10.1016/j.enconman.2015.01.055
  2. 2. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane-powered micro-tubular, single chamber solid oxide fuel cell, J. Pow. Sour. 195, 7796–7807. DOI: 10.1016/j.jpowsour.2010.01.084.10.1016/j.jpowsour.2010.01.084
  3. 3. Yang, Y., Du, X., Yang, L., Huang, Y. & Xian, H. (2009). Investigation of methane steam reforming in planar porous support of solid oxide fuel cell, Appl. Therm. Eng. 29, 1106–1113. DOI: 10.1016/j.applthermaleng.2008.05.027.10.1016/j.applthermaleng.2008.05.027
  4. 4. Hussain, M., Li, X. & Dincer, I. (2009). A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Pow. Sour. 189, 916–928, DOI: 10.1016/j.jpowsour.2008.12.121.10.1016/j.jpowsour.2008.12.121
  5. 5. Andersson, M., Yuan, J. & Sunden, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries, Inter. J. Heat Mass. Transfer 55, 773–777. DOI: 10.1016/j.ijheatmasstransfer.2011.10.032.10.1016/j.ijheatmasstransfer.2011.10.032
  6. 6. Goldin, G.M., Zhu, H., Kee, R.J., Bierschenk, D., Barnett, S.A. (2009). Multidimensional flow, thermal and chemical behavior in solid oxide fuel cell button cells, J. Pow. Sour. 187, 123–135. DOI: 10.1016/j.jpowsour.2008.10.097.10.1016/j.jpowsour.2008.10.097
  7. 7. Shi, J. & Xue, X. (2012). Inverse estimation of electrode microstructure distributions in NASA Bi-electrode supported solid oxide fuel cells, Chem. Eng. J. 182, 607–613. DOI: 10.1016/j.cej.2011.11.112.10.1016/j.cej.2011.11.112
  8. 8. Daneshvar, K., Dotelli, G., Cristiani, C., Pelosato, C. & Santarelli, M. (2014). Modelling and parametric study of a single solid oxide fuel cell by Finite Element Method, Fuel Cells. 14, 189–199. DOI: 10.1002/fuce.201300235.10.1002/fuce.201300235
  9. 9. Bertrei, A., Nucci, B. & Nicolella, C. (2013). Micro-structural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chem. Eng. Sci. 101, 175–190. DOI: 10.1016/j.ces.2013.06.032.10.1016/j.ces.2013.06.032
  10. 10. Brus, G. & Szmyd, J.S. (2008). Numerical modelling of radiative heat transfer in an internal indirect reforming type SOFC, J. Pow. Sour. 181, 8–16. DOI: 10.1149/1.2779314.
  11. 11. Zitouni, B., Ben Moussa, H., Oulmi, K., Asighi, S. & Chetehouna, K. (2009). Temperature field, H2 and H2O mass transfer in SOFC single cell: electrode and electrolyte thickness effects, Inter. J. Hydrogen Energ., 34, 5032–5039. DOI: 10.1016/j.ijhydene.2008.12.085.10.1016/j.ijhydene.2008.12.085
  12. 12. Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A. & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments, J. Pow. Sour. 242, 405–414. DOI: 10.1016/j.jpowsour.2013.05.020.10.1016/j.jpowsour.2013.05.020
  13. 13. Schluckner, C., Subotic, V., Lawlor, V. & Hochenauer, C. (2014). Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fuelled by diesel reformat – Part I: creation of a base model for further carbon deposition modeling, Inter. J. Hydrogen Energ. 39, 19102–19118. DOI: 10.1016/j.ijhydene.2014.09.108.10.1016/j.ijhydene.2014.09.108
  14. 14. Yuan, J. (2010). Simulation and analysis of multiscale transport phenomena and catalytic reactions in SOFC anodes, Chem. Prod. Proc. Model 5, 1934–2659. DOI: 10.2202/1934-2659.1450.10.2202/1934-2659.1450
  15. 15. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. J. Appl. Energ. 87, 1461–1476. DOI: 10.1016/j.apenergy.2009.1.013.
  16. 16. Bi, W.X., Chen, D.F. & Lin, Z.J. (2009). A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks, Int. J. Hydrogen Energ. 34, 3873–3884. DOI: 10.1016/j.ijhydene.2009.02.071.10.1016/j.ijhydene.2009.02.071
  17. 17. Cui, D., Liu, L., Dong, Y. & Cheng, M. (2007). Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling J. Pow. Sour. 174, 246–254. DOI: 10.1016/j.powsourc.2007.08.094.
  18. 18. Lin, B., Shi, Y., Ni, M. & Cai, N. (2015). Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell units channels, Int. J. Hydrogen Energ. 40, 3035–3047. DOI: 10.1016/j.ijhydene.2014.12.088.10.1016/j.ijhydene.2014.12.088
  19. 19. ANSYS Inc. ANSYS Fluent User’s guide, V15.0 (2015).
  20. 20. ANSYS Inc. ANSYS Fluent Fuel Cell Modules Manual, V15.0 (2015).
  21. 21. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling, Pol. J. Chem. Tech. 16, 2, 51–55. DOI: 10.2478/pjct-2014-0029.10.2478/pjct-2014-0029
  22. 22. Bossel, U. (2012). Rapid startup SOFC module, Energ. Proced. 28, 48–56. DOI: 10.1016/j.egypro.2012.08.039.10.1016/j.egypro.2012.08.039
Language: English
Page range: 64 - 71
Published on: Apr 4, 2016
Published by: Sciendo
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2016 Paulina Pianko-Oprych, Tomasz Zinko, Zdzisław Jaworski, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.