1. Ullah, K.R., Akikur, R.K., Ping, H.W., Saidur, R., Hajimolana, S.A. & Hussain, M.A. (2015). An experimental investigation on a single tubular SOFC for renevable energy based cogeneration system, Energy Conversion and Management 94, 139–149. DOI: 10.1016/j.enconman.2015.01.055.10.1016/j.enconman.2015.01.055
4. Hussain, M., Li, X. & Dincer, I. (2009). A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Pow. Sour. 189, 916–928, DOI: 10.1016/j.jpowsour.2008.12.121.10.1016/j.jpowsour.2008.12.121
8. Daneshvar, K., Dotelli, G., Cristiani, C., Pelosato, C. & Santarelli, M. (2014). Modelling and parametric study of a single solid oxide fuel cell by Finite Element Method, Fuel Cells. 14, 189–199. DOI: 10.1002/fuce.201300235.10.1002/fuce.201300235
9. Bertrei, A., Nucci, B. & Nicolella, C. (2013). Micro-structural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chem. Eng. Sci. 101, 175–190. DOI: 10.1016/j.ces.2013.06.032.10.1016/j.ces.2013.06.032
10. Brus, G. & Szmyd, J.S. (2008). Numerical modelling of radiative heat transfer in an internal indirect reforming type SOFC, J. Pow. Sour. 181, 8–16. DOI: 10.1149/1.2779314.
11. Zitouni, B., Ben Moussa, H., Oulmi, K., Asighi, S. & Chetehouna, K. (2009). Temperature field, H2 and H2O mass transfer in SOFC single cell: electrode and electrolyte thickness effects, Inter. J. Hydrogen Energ., 34, 5032–5039. DOI: 10.1016/j.ijhydene.2008.12.085.10.1016/j.ijhydene.2008.12.085
12. Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A. & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments, J. Pow. Sour. 242, 405–414. DOI: 10.1016/j.jpowsour.2013.05.020.10.1016/j.jpowsour.2013.05.020
13. Schluckner, C., Subotic, V., Lawlor, V. & Hochenauer, C. (2014). Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fuelled by diesel reformat – Part I: creation of a base model for further carbon deposition modeling, Inter. J. Hydrogen Energ. 39, 19102–19118. DOI: 10.1016/j.ijhydene.2014.09.108.10.1016/j.ijhydene.2014.09.108
14. Yuan, J. (2010). Simulation and analysis of multiscale transport phenomena and catalytic reactions in SOFC anodes, Chem. Prod. Proc. Model 5, 1934–2659. DOI: 10.2202/1934-2659.1450.10.2202/1934-2659.1450
15. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. J. Appl. Energ. 87, 1461–1476. DOI: 10.1016/j.apenergy.2009.1.013.
17. Cui, D., Liu, L., Dong, Y. & Cheng, M. (2007). Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling J. Pow. Sour. 174, 246–254. DOI: 10.1016/j.powsourc.2007.08.094.
18. Lin, B., Shi, Y., Ni, M. & Cai, N. (2015). Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell units channels, Int. J. Hydrogen Energ. 40, 3035–3047. DOI: 10.1016/j.ijhydene.2014.12.088.10.1016/j.ijhydene.2014.12.088
21. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling, Pol. J. Chem. Tech. 16, 2, 51–55. DOI: 10.2478/pjct-2014-0029.10.2478/pjct-2014-0029