Have a personal or library account? Click to login
Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes Cover

Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

Open Access
|Nov 2015

References

  1. 1. Soleimani, M. & Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones – An agricultural waste. Bioresource Technol. 99, 5374–3583. DOI: 10.1016/j.biortech.2007.11.021.10.1016/j.biortech.2007.11.02118178431
  2. 2. Soares Maia, D.A., Alexandre de Oliveira, J.C., Toso, J.P., Sapag, K., Lopez, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L. & Zgrablich, G. (2011). Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861. DOI: 10.1007/s10450-011-9344-4.10.1007/s10450-011-9344-4
  3. 3. Tsai, W.T., Chang, C.Y., Lee, S.L. & Wang, S.Y. (2001). Thermogravimetric analysis of corn cob impregnated with zinc chloride or preparation of activated carbon. J. Therm. Anal. Calorim. 63, 351–357. DOI: 10.1023/A:1010132207402.10.1023/A:1010132207402
  4. 4. Yagmur, E. (2012). Preparation of low cost activated carbons from various biomasses with microwave energy. J. Porous. Mater. 19, 995–1002. DOI: 10.1007/s10934-011-9557-7.10.1007/s10934-011-9557-7
  5. 5. Asasian, N. & Kaghazchi, T. (2013). A comparison on efficiency of virgin and sulfurized agro-based adsorbents for mercury removal from aqueous systems. Adsorption 19, 189–200. DOI: 10.1007/s10450-012-9437-8.10.1007/s10450-012-9437-8
  6. 6. Nowicki, P., Supłat, M., Przepiórski, J. & Pietrzak, R. (2012). NO2 removal on adsorbents obtained by pyrolysis and physical activation of corrugated cardboard. Chem. Eng. J. 195–196, 7–14. DOI: 10.1016/j.cej.2012.04.073.10.1016/j.cej.2012.04.073
  7. 7. Amaya, A., Píriz, J., Tancredi, N. & Cordero, T. (2007). Activated carbon pellets from eucalyptus char and tar TG studies. J. Therm. Anal. Calorim. 89, 987–991. DOI: 10.1007/s10973-006-7685-0.10.1007/s10973-006-7685-0
  8. 8. Nowicki, P., Skibiszewska, P. & Pietrzak, R. (2013). NO2 removal on adsorbents prepared from coffee industry waste materials. Adsorption 19, 521–528. DOI: 10.1007/s10450-013-9474-y.10.1007/s10450-013-9474-y
  9. 9. Alcañiz-Monge, J. & Illán-Gómez, M.J. (2008). Modification of activated carbon porosity by pyrolysis under pressure of organic compounds. Adsorption 14, 93–100. DOI: 10.1007/s10450-007-9056-y.10.1007/s10450-007-9056-y
  10. 10. Khalil, S.H., Aroua, M.K. & Wan Daud, W.M.A. (2012). Study on the improvement of the capacity of amine-impregnated commercial activated carbon beds for CO2 adsorbing. Chem. Eng. J. 183, 15–20. DOI: 10.1016/j.cej.2011.12.011.10.1016/j.cej.2011.12.011
  11. 11. Skubiszewska-Zięba, J., Sydorchuk, V.V., Gunko, V.M. & Leboda, R. (2011). Hydrothermal modification of carbon adsorbents. Adsorption 17, 919–927. DOI: 10.1007/s10450-011-9369-8.10.1007/s10450-011-9369-8
  12. 12. Budarin, V.L., Clark, J.H., Gorlova, A.A., Boldyreva, N.A. & Yatsimirsky, V.K. (2000). Chemical modification of activated carbons. J. Therm. Anal. Calorim. 62, 349–352. DOI: 10.1023/A:1010156002389.10.1023/A:1010156002389
  13. 13. Tamai, H., Shiraki, K., Shiono, T. & Yasuda, H. (2006). Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine. J. Colloid. Interf. Sci. 295, 299–302. DOI: 10.1016/j.jcis.2005.08.012.10.1016/j.jcis.2005.08.012
  14. 14. Sousa, J.P.S., Pereira, M.F.R. & Figueiredo, J.L. (2013). Modified activated carbon as catalyst for NO oxidation. Fuel Process. Technol. 106, 727–733. DOI: 10.1016/j.fuproc.2012.10.008.10.1016/j.fuproc.2012.10.008
  15. 15. Bandosz, T.J. & Ania, C.O. (2006). Surface chemistry of activated carbons and its characterization. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 105–229). Amsterdam, Holland: Elsevier Ltd.
  16. 16. Puziy, A.M., Poddubnaya, O.I., Gawdzik, B., Sobiesiak, M. & Tsyba, M.M. (2007). Phosphoric acid activation-functionalization and porosity modification. Appl. Surf. Sci. 253, 5736–3740. DOI: 10.1016/j.apsusc.2006.12.034.10.1016/j.apsusc.2006.12.034
  17. 17. Pradhan, B.K. & Sandle, N.K. (1999). Effect of different oxidizing agent treatments on the surface properties of activated carbon. Carbon 37, 1323–1332. DOI: 10.1016/S0008-6223(98)00328-5.10.1016/S0008-6223(98)00328-5
  18. 18. Yang, C.M. & Kaneko, K. (2002). Adsorption properties of iodine-doped activated carbon fiber. J. Colloid. Interface. Sci. 246, 34–39. DOI: 10.1006/jcis.2001.8012.10.1006/jcis.2001.801216290381
  19. 19. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). The influence of silver on the physicochemical and catalytic properties of activated carbons. Chem. Eng. J. 189–190, 422–30. DOI: 10.1016/j.cej.2012.02.069.10.1016/j.cej.2012.02.069
  20. 20. Park, S.J. & Shin, J.S. (2004). Preparation and characterization of activated carbon/Cu catalyst by electroless copper plating for removal of NO. J. Porous. Mater. 11, 15–19. DOI: 10.1023/B:JOPO.0000020432.04712.b8.10.1023/B:JOPO.0000020432.04712.b8
  21. 21. Pietrzak, R., Wachowska, H. & Nowicki, P. (2006). Preparation of nitrogen-enriched activated carbons from brown coal. Energ. Fuel. 20, 1275–1280. DOI: 10.1021/ef0504164.10.1021/ef0504164
  22. 22. Nowicki, P., Pietrzak, R. & Wachowska, H. (2009). Influence of metamorphism degree of the precursor on preparation of nitrogen enriched activated carbons by ammoxidation and chemical activation of coals. Energ. Fuel. 23, 2205–2212. DOI: 10.1021/ef801094c.10.1021/ef801094c
  23. 23. Nowicki, P. & Pietrzak, R. (2011). Effect of ammoxidation of activated carbons obtained from sub-bituminous coal on their NO2 sorption capacity under dry conditions. Chem. Eng. J. 166, 1039–1043. DOI: 10.1016/j.cej.2010.11.101.10.1016/j.cej.2010.11.101
  24. 24. Boehm, H.P., Diehl, E., Heck, W. & Sappok, R. (1964). Surface oxides of carbon, Angew. Chem. Int. Ed. Engl. 3, 669–677. DOI: 10.1002/anie.196406691.10.1002/anie.196406691
  25. 25. Kaźmierczak, J., Nowicki, P. & Pietrzak, R. (2013). Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 19, 273–281. DOI: 10.1007/s10450-012-9450-y.10.1007/s10450-012-9450-y
  26. 26. Goscianska, J., Nowak, I., Nowicki, P. & Pietrzak, R. (2012). Thermal analysis of activated carbons modified with silver metavanadate. Thermochim. Acta 541, 42–48. DOI: 10.1016/j.tca.2012.04.026.10.1016/j.tca.2012.04.026
  27. 27. Bimer, J., Sałbut, P.D., Berłożecki, S., Boudou, J.P., Broniek, E. & Siezieniewska, T. (1998). Modified active carbons from precursors enriched with nitrogen functions: sulfur removal capabilities. Fuel 77, 519–525. DOI: 10.1016/S0016-2361(97)00250-0.10.1016/S0016-2361(97)00250-0
  28. 28. Choma, J. & Jaroniec, M. (2006). Characterization of nanoporous carbons by using gas adsorption isotherms. In T.J. Bandosz, (ed.), Activated carbon surfaces in environmental remediation (pp. 107–158). Amsterdam, Holland: Elsevier Ltd.
  29. 29. Biniak, S., Szymański, G., Siedlewski, J. & Świątkowski, A. (1997). The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35, 1799–1810. DOI:10.1016/S0008-6223(97)00096-1.10.1016/S0008-6223(97)00096-1
  30. 30. Bansal, R.Ch. & Goyal, M. (2005). Activated Carbon Adsorption. Boca Raton, USA: Taylor & Francis Group.10.1201/9781420028812
  31. 31. Szymański, G.S., Karpiński, Z., Biniak, S. & Świątkowski, A. (2002). The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 40, 2627–2639. DOI: 10.1016/S0008-6223(02)00188-4.10.1016/S0008-6223(02)00188-4
  32. 32. Zielke, U., Huttinger, K.J. & Hoffman, W.P. (1996). Surface-oxidized carbon fibres: I. surface structure and chemistry. Carbon 34, 983–998. DOI: 10.1016/0008-6223(96)00032-2.10.1016/0008-6223(96)00032-2
  33. 33. Barton, S.S., Evans, M.I.B., Halliop, E. & MacDonald, J.A.F. (1997). Anodic oxidation of porous carbon. Langmuir 13, 1332–1336. DOI: 10.1021/la9509413.10.1021/la9509413
  34. 34. Biniak, S., Pakuła, M. & Świątkowski, A. (2001). Electrochemical studies of phenomena at active carbon-electrolyte solution interfaces. In L.R. Radovic, (ed.). Chemsitry and physics of carbon (pp. 125–226). New York, USA: Marcel Dekker,
  35. 35. Bandosz, T.J. (2009). Surface chemistry of carbon materials. In F. Serp & J.L. Figueiredo (eds.) Carbon materials for catalysis (pp. 45–92). Hoboken, USA: John Wiley & Sons Inc.
  36. 36. Boehm, H.P. (2008). Surface chemical characterization of carbons from adsorption studies. In E.J. Bottani & J.M.D. Tascon (eds.) Adsorption by carbons (pp. 301–328). Oxford, England: Elsevier.
  37. 37. Awual, M.R. (2015). A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater. Chem. Eng. J. 266, 368–375. DOI:10.1016/j.cej.2014.12.094.10.1016/j.cej.2014.12.094
  38. 38. Awual, M.R. & Hasan, M.M. (2015). Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sensor. Actuat. B-Chem. 206, 692–700. DOI:10.1016/j.snb.2014.09.086.10.1016/j.snb.2014.09.086
  39. 39. Awual, M.R., Yaita, T. & Okamoto, Y. (2014). A novel ligand based dual conjugate adsorbent for cobalt(II) andcopper(II) ions capturing from water. Sensor. Actuat. B-Chem. 203, 71–80. DOI:10.1016/j.snb.2014.06.088.10.1016/j.snb.2014.06.088
  40. 40. Rio, S., Faur-Brasquet, C., Coq, L.L., Courcoux, P. & Cloirec, P.L. (2005). Experimental design methodology for the preparation of carbonaceous sorbents from sewage sludge by chemical activation – application to air and water treatments. Chemosphere 58, 423–427. DOI: 10.1016/j.chemosphere.2004.06.003.10.1016/j.chemosphere.2004.06.003
  41. 41. Liu, C., Bai, R. & Ly, Q.S. (2008). Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: Behaviors and mechanisms. Water Res. 42, 1511–1522. DOI: 10.1016/j.watres.2007.10.031.10.1016/j.watres.2007.10.031
  42. 42. Liu, A.M., Hidajat, K., Kawi, S. & Zhao, D.Y. (2000). A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun. 1145–1146. DOI: 10.1039/B002661L.10.1039/b002661l
  43. 43. Cochrane, E.L., Lu, S., Gibb, S.W. & Villaescusa, I. (2006) A comparison of low-cost biosorbents and commercial sorbents for the removal of copper from aqueous media. J. Hazard. Mater. 137, 198–206. DOI: 10.1016/j.jhazmat.2006.01.054.10.1016/j.jhazmat.2006.01.054
  44. 44. Hu, X., Liu, Y., Wang, H., Chen, A., Zeng, G., Liu, S., Guo, Y., Hu, X., Li, T., Wang, L., Zhou, L. & Liu, S. (2013). Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 108, 189–195. DOI: 10.1016/j.seppur.2013.02.011.10.1016/j.seppur.2013.02.011
  45. 45. Bois, L., Bonhomme, A., Ribes, A., Pais B., Fraffin, G. & Tessier, F. (2003). Functionalized silica for heavy metal ions adsorption. Colloid. Surf. A: Physicochem. Eng. Asp. 221, 221–230. DOI: 10.1016/S0927-7757(03)00138-9.10.1016/S0927-7757(03)00138-9
  46. 46. Awual, M.R., Ismael, M., Yaita, T., El-Safty, S.A., Shiwaku, H., Okamoto, Y. & Suzuki, S. (2013). Trace copper(II) ions detection and removal from water using novel ligand modified composite adsorbent. Chem. Eng. J. 222, 67–76. DOI: 10.1016/j.cej.2013.02.042.10.1016/j.cej.2013.02.042
  47. 47. Awual, M.R., Yaita, T., El-Safty, S.A., Shiwaku, H., Suzuki, S. & Okamoto, Y. (2013). Copper(II) ions capturing from water using ligand modified a new type mesoporous adsorbent. Chem. Eng. J. 221, 322–330. DOI: 10.1016/j.cej.2013.02.016.10.1016/j.cej.2013.02.016
  48. 48. Awual, M.R., Ismael, M., Khaleque, M.A. & Yaita, T. (2014). Ultra-trace copper(II) detection and removal from wastewater using novel meso-adsorbent. J. Ind. Eng. Chem. 20, 2332–2340. DOI: 10.1016/j.jiec.2013.10.009.10.1016/j.jiec.2013.10.009
  49. 49. Awual, M.R., Rahman, I.M.M., Yaita, T., Khaleque, M.A. & Ferdows, M. (2014). pH dependent Cu(II) and Pd(II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem. Eng. J. 236, 100–109. DOI: 10.1016/j.cej.2013.09.083.10.1016/j.cej.2013.09.083
Language: English
Page range: 120 - 127
Published on: Nov 27, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Piotr Nowicki, Wiktor Szymanowski, Robert Pietrzak, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.