Have a personal or library account? Click to login

Studies of physicochemical properties of graphite oxide and thermally exfoliated/reduced graphene oxide

Open Access
|Nov 2015

References

  1. 1. Eda, G. & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22(22), 2392–2415. DOI: 10.1002/adma.200903689.10.1002/adma.200903689
  2. 2. Stankovich, S., Dikin, D.A., Piner, R.D.,. Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. & Ruoff, R.S. (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565. DOI:10.1016/j.carbon.2007.02.034.10.1016/j.carbon.2007.02.034
  3. 3. Wong, C., Jankovsky, O., Sofer, Z. & Pumera, M. (2014). Vacuum-assisted microwave reduction/exfoliation of graphite oxide and the influence of precursor graphite oxide. Carbon 77, 508–517. DOI: 10.1016/j.carbon.2014.05.056.10.1016/j.carbon.2014.05.056
  4. 4. Drewniak, S., Pustelny, T., Muzyka, R., Konieczny, G. & Kałużyński, P. (2014). The effect of oxidation and reduction processes on physicochemical properties of graphite oxide and reduced graphene. Photo. Lett. Pol. 6(4) 130–132. DOI: 10.4302/plp.2014.4.06.10.4302/plp.2014.4.06
  5. 5. McAllister, M., Li, J., Adamson, D., Schniepp, A.A., Liu, J., Herrera-Alonso, M., Milius, D., Car, R., Prud’homme, R. & Aksay, A. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite., Chem. Mater. 19(18), 4396–4404. DOI: 10.1021/cm0630800.10.1021/cm0630800
  6. 6. Lipińska, L., Koziński, R., Jagiełło J., Librant, K., Aksienionek, M. & Wiliński, Z. (2012). Chemical methods of obtaining graphene flakes. Chem. Przem. 5, 16–19. (In Polish).
  7. 7. Pacile, D., Meyyer, J., Rodriguez, A., Papagno, M., Gomez-Navarro, C., Sundaram, R., Burghard, M., Kern, K., Carbone, C. & Kaiser, U. (2011). Electronic properties and atomic structure of graphene oxide membranes. Carbon 49, 966–972. DOI: 10.1016/j.carbon.2010.09.063.10.1016/j.carbon.2010.09.063
  8. 8. Sheng, K., Xu, Y., Li, C. & Shi, G. (2011). High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide. New Carbon Mater. 26(1), 9–15. DOI: 10.1016/S1872-5805(11)60062-0.10.1016/S1872-5805(11)60062-0
  9. 9. Schwamb, T., Burg, B.R., Schirmer, N.C. & Poulikakos, D. (2009). An electrical method for the measurement of the thermal and electrical conductivity of reduced graphene oxide nanostructures. Nanotechnology 20, 405704(5pp). DOI: 10.1088/0957-4484/20/40/405704.10.1088/0957-4484/20/40/40570419738310
  10. 10. Basu, S. & Bhattacharyya. (2012). Recent developments on graphene and graphene oxide based solid state gas sensors. Sensors and Actuators B: Chemical. 173, 1–21 DOI: 10.1016/j.snb.2012.07.092.10.1016/j.snb.2012.07.092
  11. 11. Drewniak, S., Pustelny, T., Muzyka, R., Stolarczyk, A. & Konieczny, G. (2015). Investigations of selected physical properties of graphite oxide and thermally exfoliated/reduced graphene oxide in the aspect of their applications in photonic gas sensors. Photo. Lett. Pol. 7(2), 47–49. DOI: 10.4302/plp.2015.2.06.10.4302/plp.2015.2.06
  12. 12. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L. & Zhang, Y. (2014). Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25(2), 1–9. DOI: 10.1088/0957-4484/25/2/025502.10.1088/0957-4484/25/2/02550224334417
  13. 13. Pustelny, T., Procek, M., Maciak, E., Stolarczyk, A., Drewniak, S., Urbanczyk, M., Setkiewicz, M., Gut, K. & Opilski, Z. (2012). Gas sensors based on nanostructures of semiconductors ZnO and TiO2. Bull. Pol. Ac.: Tech. 60 (4), 853–859. DOI: 10.2478/v10175-012-0099-1.10.2478/v10175-012-0099-1
  14. 14. Pustelny, T., Setkiewicz, M., Drewniak, S., Maciak, E., Stolarczyk, A., Procek, M., Urbanczyk, M., Gut, K., Opilski, Z., Pasternak, I. & Strupinski, W. (2012). The Influence of Humidity on the Resistance Structures with Graphene Sensor Layer. Acta Phy. Polon. A 122, 870–873. ISSN: 05874246.10.12693/APhysPolA.122.870
  15. 15. Kong, J., Franklin, N.R., Zhou, C., Chapline, M.G., Peng, S., Cho, K. & Dai, H. (2000). Nanotube molecular wires as chemical sensors. Science 287(5453), 622–625. DOI: 10.1126/science.287.5453.622.10.1126/science.287.5453.62210649989
  16. 16. Dobrzanska-Danikiewicz, A.D., Cichocki, D., Łukowiec, D. & Wolany, W. (2014). Carbon nanotubes synthesis time versus their layer height. Arch. Mater. Sci. Engine. 69(1), 5–11. ISSN 18972764
  17. 17. Pustelny, T., Drewniak, S., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M. Gut, K. Opilski, Z., Jagiello, J. & Lipinska. L. (2013) The sensitivity of sensor structures with oxide graphene exposed to selected gaseous atmospheres. Bull. Pol. Ac.: Tech. 61(3), 705–710. DOI: 10.2478/bpasts-2013-0075.10.2478/bpasts-2013-0075
  18. 18. Drewniak, S., Pustelny, T., Setkiewicz, M., Maciak, E., Urbańczyk, M., Procek, M., Opilski, Z., Jagiello, J. & Lipinska, L. (2013). Investigations of SAW Structures with Oxide Graphene Layer to Detection of Selected Gases. Acta Phys. Polon. A 124(3), 402–405. DOI: 10.12693/APhysPolA.124.402.10.12693/APhysPolA.124.402
  19. 19. Wang, S., Geng, Y., Zheng, Q. & Kim, J. (2010). Fabrication of highly conducting and transparent graphene films. Carbon 48, 1815–1823. DOI: 10.1016/j.carbon.2010.01.027.10.1016/j.carbon.2010.01.027
  20. 20. Dikin, D., Stankovich, S., Zimney, E., Piner, R., Dommett, G., Evmenenko, G. &Ruoff, R. (2007). Preparation and characterization of graphene oxide paper. Nature 448(7152), 457–460. DOI: 10.1038/nature06016.10.1038/nature0601617653188
  21. 21. Hummers, W.S. (1954). U.S. Patent No. 2,798,878. Detroit, Mich.: United States Patent Office.
  22. 22. Eigler, S., Dotzer, C. & Hirsch, A. (2012). Visualization of defect densities in reduced graphene oxide. Carbon 50(10), 3666–3673. DOI: 10.1016/j.carbon.2012.03.039.10.1016/j.carbon.2012.03.039
  23. 23. Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C. &Yang, Q.H. (2013). Review Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62, 11–24. DOI: 10.1016/j.carbon.2013.05.033.10.1016/j.carbon.2013.05.033
Language: English
Page range: 109 - 114
Published on: Nov 27, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Sabina Elżbieta Drewniak, Tadeusz Piotr Pustelny, Roksana Muzyka, Agnieszka Plis, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.