3. Pena, A., Veiga, S., Sapelli, M., Martinez, N., Marquez, V., Dellacassa, E. & Bussi, J. (2012). Limonene oxidation by molecular oxygen under solvent-free conditions: The influence of peroxides and catalysts on the reaction rate. React. Kinet. Mech. Catal. 107, 263–275. DOI: 10.1007/s11144-012-0485-6.10.1007/s11144-012-0485-6
6. Corma, A., Iborra, S. & Velty, A. (2007). Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2512. DOI: 10.1021/cr050989d.10.1021/cr050989d17535020
7. Arizaga, B., Leon, A., Burguen. N., Lopez, A., Paz, D., Martınez, N., Lorenzo, D., Dellacassa, E. & Bussi, J. (2007). A clean process for the production of oxygenated limonene derivatives starting from orange oil. J. Chem. Technol. Biotechnol. 82, 532–538. DOI: 10.1002/jctb.1690.10.1002/jctb.1690
8. Nguyen, T.T.T., Nguyen Chau, D.K., Duus, F. & Le, T.N. (2013). Green synthesis of carvenone by montmorillonite-catalyzed isomerization of 1,2-limonene oxide. J. Org. Chem. 3, 206–209. DOI: 10.4236/ijoc.2013.33027.10.4236/ijoc.2013.33027
13. Gupta, A., Stratton, S.P. & Myrdal, P.B. (2005). An HPLC method for quantitation of perillyl alcohol in a topical pharmaceutical cream formulation. J. Pharm. Biomed. Anal. 37, 447–452. DOI: 10.1016/j.jpba.2004.02.039.10.1016/j.jpba.2004.02.039
14. Bonon, A.J., Mandelli, D., Kholdeeva, O.A., Barmatova, M.V., Kozlov, Y.N. & Shulpin, G.B. (2009). Oxidation of alkene and olefins with hydrogen peroxide in acetonitrile solution catalyzed by a mesoporous titanium-silicate Ti-MMM-2. Appl. Catal. A General 365, 96–104. DOI: 10.1016/j.apcata.2009.05.060.10.1016/j.apcata.2009.05.060
16. Cagnoli, M.V., Casuscelli, S.G., Alvarez, A.M., Bengoa, J.F., Gallegos, N.G., Crivello, M.E., Herrero, E.R. & Marchetti, S.G. (2005). Ti-MCM_41 silylation: development of a simple methodology for its estimation. Silylation effect on the activity and selectivity in the limonene oxidation with H2O2. Catal. Today 107–108, 397–403. DOI: 10.1016/j.cattod.2005.07.034.10.1016/j.cattod.2005.07.034
19. Chiker, F., Launay, F., Nogier, J.P. & Bonardet, J.L. (2003). Green and selective epoxidation of alkenes catalysed by new TiO2-SiO2 SBA mesoporous solids. Green Chem. 5, 318–322. DOI: 10.1039/B300244F.10.1039/B300244F
22. Camblor, M.A., Corma, A. & Perez-Pariente, J. (1993). Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts. Zeolites 13, 82–87.10.1016/0144-2449(93)90064-A
23. Grun, M., Unger, K.K., Matsumoto, A. & Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mater. 27, 207–216.10.1016/S1387-1811(98)00255-8
24. Wu, P., Tatsumi, T., Komatsu, T. & Yashima, T. (2001). A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J. Phys. Chem. B 105(15), 2897. DOI: 10.1021/jp002816s.10.1021/jp002816s
25. Wróblewska, A. (2008). Epoxidation of allylic compounds with hydrogen peroxide and in the presence of the titanium silicate catalyst. Szczecin, Poland: Publishing House of Technical University of Szczecin (in Polish).
26. Wróblewska, A. (2006). Optimization of the reaction parameters of epoxidation of allyl alcohol with hydrogen peroxide over TS-2 catalyst. Appl. Catal A: General 309, 192–200. DOI: 10.1016/j.apcata.2006.05.004.10.1016/j.apcata.2006.05.004
27. Wróblewska, A., Fajdek, A., Wajzberg, J. & Milchert E. (2009). Epoxidation of allyl alcohol over mesoporous Ti-MCM-41 catalyst. J. Hazard. Mater. 170, 405–410. DOI: 10.1016/j.jhazmat.2009.04.082.10.1016/j.jhazmat.2009.04.08219464116
28. Wróblewska, A., Fajdek, A., Milchert, E. & Grzmil, B. (2010). The Ti-MWW catalyst – its characteristic and catalytic properties in the epoxidation of allyl alcohol by hydrogen peroxide. Pol. J. Chem. Technol. 12(1), 29–34. DOI: 10.2478/v10026-010-0006-1.10.2478/v10026-010-0006-1
29. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). The establishing the products in the process of glycerol obtaining during the epoxidation of allyl alcohol. Zawod. Lab. 40, 1192–1194. (in Russian).