Have a personal or library account? Click to login

Studies of polypropylene membrane fouling during microfiltration of broth with Citrobacter freundii bacteria

Open Access
|Nov 2015

References

  1. 1. Cui, Z.F. & Muralidhara, H.S. (Eds.). (2010). Membrane technology. A practical guide to membrane technology and applications in food and bioprocessing. Oxford, UK: Elsevier.
  2. 2. Sadr Ghayeni, S.B., Beatson, P.J., Fane, A.J. & Schneider, R.P. (1999). Bacterial passage through microfiltration membranes in wastewater applications. J. Membr. Sci. 153, 71–82. DOI: 10.1016/S0376-7388(98)00251-8.10.1016/S0376-7388(98)00251-8
  3. 3. Avci, F.G., Huccetogullari, D. & Azbar, N. (2014). The effects of cell recycling on the production of 1,3-propanediol by Klebsiella pneumonia. Bioprocess Biosyst. Eng. 37, 513–519. DOI: 10.1007/s00449-013-1018-z.10.1007/s00449-013-1018-z
  4. 4. Noworyta, A., Trusek-Holownia, A., Mielczarski, S. & Kubasiewicz-Ponitka, M. (2006). An integrated pervaporation-biodegradation process of phenolic wastewater treatment. Desalination. 198, 191–197. DOI: 10.1016/j.desal.2006.01.025.10.1016/j.desal.2006.01.025
  5. 5. Tomczak, W. (2014). Badania rozdzielania brzeczek fermentacyjnych technikami membranowymi (Studies of broths separation by membrane processes). PhD thesis, West Pomeranian University of Technology, Szczecin.
  6. 6. Sadr Ghayeni, S.B., Beatson, P.J., Schneider, R.P. & Fane, A.G. (1998). Water reclamation from municipal wastewater using combined microfiltration-reverse osmosis (MF-RO): Preliminary performance data and microbiological aspects of system operation. Desalination. 116, 65–80. DOI: 10.1016/S0011-9164(98)00058-7.10.1016/S0011-9164(98)00058-7
  7. 7. Kumar, R. & Ismail, A.F. (2015). Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 132, 1–20. DOI: 10.1002/app.42042.10.1002/app.42042
  8. 8. Bonnélye, V., Guey, L. & Del Castillo, J. (2008). UF/MF as RO pre-treatment: the real benefit. Desalination. 222, 59–65, DOI: 10.1016/j.desal.2007.01.129.10.1016/j.desal.2007.01.129
  9. 9. Ogunbiyi, O.O., Miles, N.J. & Hilal, N. (2008). The effects of performance and cleaning cycles of new tubular ceramic microfiltration membrane fouled with a model yeast suspension. Desalination. 220, 273–289. DOI: 10.1016/j.desal.2007.01.034.10.1016/j.desal.2007.01.034
  10. 10. Ulbricht, M., Ansorge, W., Danielzik, I., König, M. & Schuster, O. (2009). Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of poly-phenols and polysaccharides. Sep. Purif. Technol. 68, 335–342, DOI: 10.1016/j.seppur.2009.06.004.10.1016/j.seppur.2009.06.004
  11. 11. Markardij, A., Chen, X.D. & Farid, M.M. (1999). Microfiltration and ultrafiltration of milk: some aspects of fouling and cleaning. Food Bioprod. Proc. 77, 107–113. DOI: 10.1205/096030899532394.10.1205/096030899532394
  12. 12. Karasu, K., Glennon, N., Lawrence, N.D., Stevens, G.W., O’Connor, J.O., Barber, A.R., Yoshikawa, S. & Kentish, S.E. (2010). A comparison between ceramic and polymeric membrane systems for casein concentrate manufacture, Int. J. Dairy Technol. 63, 284–289. DOI: 10.1111/j.1471-0307.2010.00582.x.10.1111/j.1471-0307.2010.00582.x
  13. 13. Schäfer, A.I., Fane, A.G. & Waite, T.D. (Eds.). (2005). Nanofiltration: Principles and applications. Oxford, UK: Elsevier Advanced Technology.
  14. 14. Kroll, S., Treccani, L., Rezwan, K. & Grathwohl, G. (2010). Development and characterisation of functionalised ceramic microtubes for bacteria filtration. J. Mem. Sci. 365, 447–455. DOI: 10.1016/j.memsci.2010.09.045.10.1016/j.memsci.2010.09.045
  15. 15. Gryta, M., Markowska-Szczupak, A., Bastrzyk, J. & Tomczak, W. (2013). The study of membrane distillation used for separation of fermenting glycerol solutions. J. Mem. Sci. 431, 1–8. DOI: 10.1016/j.memsci.2012.12.032.10.1016/j.memsci.2012.12.032
  16. 16. Brandes, C., Treccani, L., Kroll, S. & Rezwan, K. (2014). Gel casting of free-shapeable ceramic membranes with adjustable pore size for ultra- and microfiltration. J. Am. Ceram. Soc. 97, 1393–1401. DOI: 10.1111/jace.12877.10.1111/jace.12877
  17. 17. Metsoviti, M., Zeng, An-P., Koutinas, A.A. & Papanikolaou, S. (2013). Enhanced 1,3-propanediol production by a newly isolated Citrobacter freundii strain cultivated on biodiesel-derived waste glycerol through sterile and non-sterile bioprocesses. J. Biotechnol. 163, 408–418. DOI: 10.1016/j.jbiotec.2012.11.018.10.1016/j.jbiotec.2012.11.018
  18. 18. Ferreira, T.F., Ribeiro, R.R., Ribeiro, C.M.S., Freire, D.M.G. & Coelho, M.A.Z. (2012). Evaluation of 1,3-Propanediol Production from Crude Glycerol by Citrobacter freundii ATCC 8090. Chem. Eng. Transac. 27, 157–162. DOI: 10.3303/CET1227027.
  19. 19. Barbirato, F., Himmi, El H., Conte, T. & Bories, A. (1998). 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind. Crops Prod. 7, 281–289. DOI: 10.1016/S0926-6690(97)00059-9.10.1016/S0926-6690(97)00059-9
  20. 20. Colin, T. Bories, A. & Moulin, G. (2000). Inhibition of Clostridium butyricum by 1,3-propanediol and diols during glycerol fermentation. Appl. Microbiol. Biotechnol. 54, 201–205, DOI: 10.1007/s002530000365.10.1007/s00253000036510968633
  21. 21. Biebl, H. (1991). Glycerol fermentation of 1,3-propanediol by Clostridium butyricum. Measurement of product inhibition by use a pH-auxostat. Appl. Microbiol. Biotechnol. 35, 701–705, DOI: 10.1007/BF00169880.10.1007/BF00169880
  22. 22. Zeng, A.P., Ross, A., Biebl, H., Tag, C., Günzel, B. & Deckwer, W.D. (1994). Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiellia pneumoniae in glycerol fermentation. Biotechnol. Bioeng. 44, 902–911. DOI: 10.1002/bit.260440806.10.1002/bit.26044080618618908
  23. 23. Bastrzyk, J. & Gryta, M. (2015). Separation of post-fermentation glycerol solution by nanofiltration membrane distillation system. Desalin. Water Treat. 53, 319–329. DOI: 10.1080/19443994.2013.839402.10.1080/19443994.2013.839402
  24. 24. Rodrigues, C., Cavaco Morão, A.I., de Pinho, M.N. & Geraldes, V. (2010). On the prediction of permeate flux for nanofiltration of concentrated aqueous solutions with thin-film composite polyamide membranes. J. Membr. Sci. 346, 1–7. DOI: 10.1016/j.memsci.2009.08.023.10.1016/j.memsci.2009.08.023
  25. 25. Wang, J.T., Chang, S.C., Chen, Y.C. & Luh, K.T. (2000). Comparison of antimicrobial susceptibility of Citrobacter freundii isolates in two different time periods. J. Microbiol. Immunol. Infect. 33, 258–62.
  26. 26. Chaudhry, W.N., Haq, I.U., Andleeb, S. & Qadri, I. (2014). Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J. Basic Microbiol. 54, 531–541. DOI: 10.1002/jobm.201200710.10.1002/jobm.201200710
  27. 27. Chung, J., Kang, J.S., Jurng, J.S., Jung, J.H. & Kim, B.Ch. (2015). Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67, 303–308. DOI:10.1016/j.bios.2014.08.039.10.1016/j.bios.2014.08.039
  28. 28. Bastrzyk, J., Gryta, M. & Karakulski, K, (2014). Fouling of nanofiltration membranes used for separation of fermented glycerol solutions. Chem. Pap. 68, 757–765. DOI: 10.2478/s11696-013-0520-8.10.2478/s11696-013-0520-8
  29. 29. Lebleua, N., Roquesb, Ch., Aimara, P. & Causseranda, Ch. (2009). Role of the cell-wall structure in the retention of bacteria by microfiltration membranes. J. Mem. Sci. 326, 178–185. DOI: 10.1016/j.memsci.2008.09.049.10.1016/j.memsci.2008.09.049
  30. 30. Gryta, M. (2007). Influence of polypropylene membrane surface porosity on the performance of membrane distillation process. J. Membr. Sci. 287, 67–78. DOI:10.1016/j.memsci.2006.10.011.10.1016/j.memsci.2006.10.011
  31. 31. Hoek, E.M.V., Bhattacharjee, S. & Elimelech, M. (2003). Effect of membrane surface roughness on colloid–membrane DLVO interactions. Langmuir 19, 4836–4847. DOI: 10.1021/la027083c.10.1021/la027083c
  32. 32. Mohammad, A.W., Basha, R.K. & Leo, C.P. (2010). Nanofiltration of glucose solution containing salts: Effects of membrane characteristics, organics component and salts on retention. J. Food Eng. 97, 510–518. DOI: 10.1016/j.jfoodeng.2009.11.010.10.1016/j.jfoodeng.2009.11.010
  33. 33. Xu, P., Drewes, J.E., Kim, T.U., Bellona, C. & Amy, G. (2006). Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications, J. Membr. Sci. 279, 165–175. DOI: 10.1016/j.memsci.2005.12.001.10.1016/j.memsci.2005.12.001
  34. 34. Schneider, R., Hölz, W., Wollbeck, R. & Ripperger, S. (1988). Membranes and modules for transmembrane distillation. J. Membr. Sci. 39, 25–42. DOI: DOI:10.1016/S0376-7388(00)80992-8.10.1016/S0376-7388(00)80992-8
  35. 35. Gryta, M., Markowska-Szczupak, A., Grzechulska-Damszel, J., Bastrzyk, J. & Waszak, M. (2014). The study of glycerol-based fermentation and broth downstream by nanofiltration, Pol. J. Chem. Technol. 16, 117–122. DOI: 10.2478/pjct-2014-0081.10.2478/pjct-2014-0081
  36. 36. Kosvintsev, S., Cumming, I., Holdich, R., Lloyd, D. & Starov, V. (2004). Sieve mechanism of microfiltration separation. Coll. Surf., A: Physicochemical Engineering Aspects, 230, 167–182. DOI: 10.1016/j.colsurfa.2003.09.027.10.1016/j.colsurfa.2003.09.027
  37. 37. Lee, D.J., Chen, G.Y., Chang, Y.R. & Lee, K.R. (2012). Harvesting of chitosan coagulated Chlorella vulgaris using cyclic membrane filtration-cleaning. J. Taiwan Inst. Chem. Eng. 43, 948–952. DOI: 10.1016/j.jtice.2012.07.002.10.1016/j.jtice.2012.07.002
  38. 38. Kim, Y.J., Yun, T., Lee, S., Kim, D. & Kim, J. (2014). Accelerated testing for fouling of microfiltration membranes using model foulants. Desalination. 343, 113–119 DOI: 10.1016/j.desal.2014.01.016.10.1016/j.desal.2014.01.016
  39. 39. Pollice, A., Brookes, A., Jefferson, B. & Judd, S. (2005). Sub-critical flux fouling in membrane bioreactors a review of recent literature. Desalination 174, 221–230. DOI: 0.1016/j.desal.2004.09.012.10.1016/j.desal.2004.09.012
Language: English
Page range: 56 - 64
Published on: Nov 27, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Marek Gryta, Marta Waszak, Maria Tomaszewska, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.