Have a personal or library account? Click to login

Reclamation from palm oil mill effluent using an integrated zero discharge membrane-based process

By:
Open Access
|Nov 2015

References

  1. 1. Latif Ahmad, A., Ismail, S. & Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. Desalination 157(1), 87–95. DOI: 10.1016/S0011-9164(03)00387-4.10.1016/S0011-9164(03)00387-4
  2. 2. Prasertsan, S. & Prasertsan, P. (1996). Biomass residues from palm oil mills in Thailand: an overview on quantity and potential usage. Biom. Bioen. 11(5), 387–395. DOI: S0961–9534 (96) 00034-7.10.1016/S0961-9534(96)00034-7
  3. 3. Ma, A. (2000). Environmental management for the palm oil industry. Palm Oil Dev. 30, 1–10.
  4. 4. Hughes, R. (1996). Industrial membrane separation technology. Springer.
  5. 5. Ahmad, A., et al. (2006). Drinking water reclamation from palm oil mill effluent (POME) using membrane technology. Desalination.191(1), 35–44. DOI: 10.1016/j.desal.2005.06.033.10.1016/j.desal.2005.06.033
  6. 6. Ahmad, A., Ismail, S. & Bhatia, S. (2005). Ultrafiltration behavior in the treatment of agro-industry effluent: pilot scale studies. Chem. Engine. Sci. 60(19), 5385–5394. DOI: 10.1016/j.ces.2005.04.021.10.1016/j.ces.2005.04.021
  7. 7. Ahmad, A., Sumathi, S. & Hameed, B. (2006). Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Engine. J. 118(1), 99–105. DOI: 10.1016/j.cej.2006.02.001.10.1016/j.cej.2006.02.001
  8. 8. Sundram, K., Sambanthamurthi, R. & Tan., Y.A. (2003). Palm fruit chemistry and nutrition. Asia Pac. J. Clinic. Nutr. 12(3).
  9. 9. Ahmad, A.L., Chan, C.Y., Abd Shukor, S.R. & Mashitah, M.D. (2010). Adsorption Chromatography of Carotenes from Extracted Oil of Palm Oil Mill Effluent. J. Appl. Sci. 10(21), 2623–2627. ISSN: 1812-5654.10.3923/jas.2010.2623.2627
  10. 10. Ahmad, A.L., Chan, C.Y., Abd Shukor, S.R., Mashitah, M.D. (2009). Optimization of oil and carotenes recoveries from palm oil mill effluent using response surface methodology. J. Chem. Technol. Biotech. 84(7), 1063–1069. DOI: 10.1002/jctb.2135.10.1002/jctb.2135
  11. 11. Del Campo, J.A., García-González, M. & Guerrero, M.G.. (2007). Outdoor cultivation of microalgae for carotenoid production: current state and perspectives. Appl. Microbiol. Biotech. 74(6), 1163–1174. DOI: 10.1007/s00253-007-0844-9.10.1007/s00253-007-0844-9
  12. 12. Bhosale, P. & Bernstein, P.S. (2004). β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. J. Ind. Microbiol. Biotech. 31(12), 565–571. DOI: 10.1007/s10295-004-0187-9.10.1007/s10295-004-0187-9
  13. 13. Chow, M. & Ho, C. (2002). Chemical composition of oil droplets from palm oil mill sludge. J. Oil Palm Res. 14, 25–34.
  14. 14. Habib, M.A.B., Yusoff, F.M., Phang, S.M., Ang, K.J. & Mohamed, S. (1997). Nutritional values of chironomid larvae grown in palm oil mill effluent and algal culture. Aquaculture. 158(1), 95–105. DOI: 10.1016/S0044-8486(97)00176-2.10.1016/S0044-8486(97)00176-2
  15. 15. Ahmad, A., Ismail, S. & Bhatia, S. (2005). Membrane treatment for palm oil mill effluent: effect of transmembrane pressure and crossflow velocity. Desalination 179(1), 245–255. DOI: 10.1016/j.desal.2004.11.071.10.1016/j.desal.2004.11.071
  16. 16. Liu, G., Liu, Y., Ni, J., Shi, H. & Qian, Y. (2004). Treatability of kraft spent liquor by microfiltration and ultrafiltration. Desalination 160,(1), 131–141. PII: S 0011-9164(03)00588-5.10.1016/S0011-9164(04)90003-3
  17. 17. Loconto, P.R. (2006). Trace Environmental Quantitative Analysis: Princiles, Techniques and Applications. Boca Raton:CRC Press.
  18. 18. Ma, A.N., Tajima, Y., Asahi, M. & Junit, H. (1996). A novel treatment process for palm oil mill effluent. PORIM Technology 19, 1–8.
  19. 19. Bustamante, M.A., Moral, R., Paredes, C., Perez-Espinosa, A., Moreno-Caselles, J., Perez Murcia, M.D. (2008). Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manage. 28(2), 372–380. DOI: 10.1016/j.waman.2007.01.013.
  20. 20. Cordovil, C.M., Cabral, F. & Coutinho, J. (2007). Potential mineralization of nitrogen from organic wastes to ryegrass and wheat crops. Biores. Technol. 98(17), 3265–3268. DOI: 10.1016/j.biortech.2006.07.014.10.1016/j.biortech.2006.07.014
  21. 21. Paredes, C., Cegarra, J., Roig, A., Sanchez-Monedero, M.A.A. & Bernal, M.P. (2007). Characterization of olive mill wastewater (alpechin) and its sludge for agriculture purposes. Biores. Technol. 67, 111–115. DOI: 10.1016/S0960-8524(98)00106-0.10.1016/S0960-8524(98)00106-0
  22. 22. Guerrero, C.C., Carrasco de Brito, J., Lapa, N. & Oliveira, J.F.S. (1995). Re-use of industrial orange wastes as organic fertilizers. Biores. Technol. 53, 43–51. DOI: 10.1016/0960-8524(95)00050-O.10.1016/0960-8524(95)00050-O
Language: English
Page range: 49 - 55
Published on: Nov 27, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 A.L. Ahmad, I. Idris, C.Y. Chan, S. Ismail, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.