Have a personal or library account? Click to login

Issues related to waste sewage sludge drying under superheated steam

Open Access
|Nov 2015

References

  1. 1. Hamawand, I. (2011). Effect of Colloidal Particles associated with the Liquid Bridge in Sticking during Drying in Superheated Steam. Inter. J. Engineer. 24(2), 119–126.
  2. 2. Bhandari, B. & Howes, T. (2005). Relating the stickiness property of food undergoing drying and dried products to their surface energy. Drying Technol. 23, 781–797. DOI: 10.1081/DRT-200054194.10.1081/DRT-200054194
  3. 3. Mazzone, D.N., Tardos, G.I. & Pfeffer, R. (1987). The behaviour of liquid bridges between two relatively moving particles. Powder Technol.. 51, 71–83. DOI: 10.1016/0032-5910(87)80041-4.10.1016/0032-5910(87)80041-4
  4. 4. Adhikari, B., Howes, T., Bhandari, B.R. & Truong V. (2001). Stickiness in foods: A review of mechanisms and test methods. Inter. J. Food Proper. 4 (1), 1–33. DOI: 10.1081/JFP-100002186.10.1081/JFP-100002186
  5. 5. Mu, Fusheng & Su Xubin. (2007). Analysis of liquid bridge between spherical particles. China Particuology 5, 420–424. DOI: 10.1016/j.cpart.2007.04.006.10.1016/j.cpart.2007.04.006
  6. 6. Font, R., Gomez-Rico, M.F. & Fullana, A. (2011). Skin effect in the heat and mass transfer model for sewage sludge drying. Sep. Puri. Technol. 77, 146–161. DOI: 10.1016/j.seppur.2010.12.001.10.1016/j.seppur.2010.12.001
  7. 7. Bennamoun, L., Arlabosse, P. & Léonard, A. (2013). Review on fundamental aspect of application of drying process to waste water sludge. Renewable and Sustainable Energy Rev. 28, 29–43. DOI: 10.1016/j.rser.2013.07.043.10.1016/j.rser.2013.07.043
  8. 8. Pajak, T. (2013). Thermal Treatment as Sustainable Sewage Sludge Management. Environ. Protect. Engineer. 39(2), 41–53. DOI: 10.5277/EPE130205.
  9. 9. Mathioudakis, V.L., Kapagiannidis, A.G., Athanasoulia, E., Paltzoglou, A.D., Melidis, P. & Aivasidis, A. (2013). Sewage Sludge Solar Drying: Experiences from the First Pilot-Scale Application in Greece. Drying Technology: An Inter. J. 31(5), 519–526. DOI: 10.1080/07373937.2012.744998.10.1080/07373937.2012.744998
  10. 10. Li, Y., Wang, H., Zhang, J., Wang, J. & Lan, O. (2013). Co-Processing Sewage Sludge in Cement Kiln in China. J. Water Res. Protect. 5, 906–910. DOI: 10.4236/jwarp.2013.59093.10.4236/jwarp.2013.59093
  11. 11. Hamawand, I. & Yusaf, T. (2014). Modelling the Particle Motion in a Cascading Rotary Drum Dryer. Canadian J. Chem. Engineer. 92(4), 648–662. DOI: 10.1002/cjce.21845.10.1002/cjce.21845
  12. 12. Wardjiman, C., Lee, A., Shehan, M.E. & Rhodes, M. (2008). Behaviour of a curtain of particles falling through a horizontally-flowing gas stream. Powder Technol. 188(2), 110–118. DOI: 10.1016/j.powtec.2008.04.002.10.1016/j.powtec.2008.04.002
  13. 13. Pronyk, C., Cenkowski, S. & Muir, W.E. Drying foodstuff with superheated steam. Drying Technol. 22(5), 899–916. DOI: 10.1081/DRT-120038571.10.1081/DRT-120038571
  14. 14. Van Deventer, H.C. & Heijmans, R.M.H. (2001). Drying with superheated steam. Drying Technol. 19(8), 2033–2045. DOI: 10.1081/DRT-100107287.10.1081/DRT-100107287
  15. 15. Soponronnarit, S., Nathakaranakule, A., Jirajindalert, A. & Taechapairoj, C. (2006). Parboiling brown rice using superheated steam fluidization technique. J. Food Engineer. 75, 423–432. DOI: 10.1016/j.jfoodeng.2005.04.058.10.1016/j.jfoodeng.2005.04.058
  16. 16. Soponronnarit, S., Prachayawarakorn, S., Rordprat, W., Nathakaranakule, A. & Tia, W. (2006). A superheated steam fluidized bed dryer for Parboiled Rice: testing of pilot-scale and mathematical Model Development. Drying Technol. 24(11), 1457–1467. DOI: 10.1080/07373930600952800.10.1080/07373930600952800
  17. 17. Beeby, C. (1984). Drying in Superheated steam-fluidized bed. Unpublished doctoral dissertation, University of Monash, Melbourne, Australia.
  18. 18. Trommelen, A.M. & Crosby, E.J. (1969). Evaporation and drying of drops in superheated vapours. AIChE Journal. 16 (5), 857–867. DOI: 10.1002/aic.690160527.10.1002/aic.690160527
  19. 19. Tang, Z. & Cenkowski, S. (2000). Dehydration dynamics of potatoes in superheated steam and hot air. Can. Agric. Engineer. 42(1).
  20. 20. Elustondo, D., Elustondo, M.P. & Urbicain, M.J. (2001). Mathematical modelling of moisture evaporation from foodstuffs exposed to subatmospheric pressure superheated steam. J. Food Engineer. 49(1), 15–24. DOI: 10.1016/S0260-8774(00)00180-1.10.1016/S0260-8774(00)00180-1
  21. 21. Pakowiski, Z., Krupinka, B. & Adamski, R. (2007). Prediction of sorption equilibrium both in air and superheated steam drying of energetic variety of willow salix viminalis in wide temperature range. Fuel 86(12–13), 1749–1757. DOI: 10.1016/j.fuel.2007.01.016.10.1016/j.fuel.2007.01.016
  22. 22. Hamawand, I. Yusaf, T. & Bennett, J. (2014). Study and Modelling Drying of Banana Slices under Superheated Steam. Asia Pacific J. Chem. Engineer. 9(4), 591–603. DOI: 10.1002/apj.1788.10.1002/apj.1788
  23. 23. da Silva, W.P., Hamawand, I. & E. Silva C.M.D.P.S. (2014). A liquid diffusion model to describe drying of whole bananas using boundary-fitted coordinates. J. Food Engineer. 137, 32–38. DOI: 10.1016/j.jfoodeng.2014.03.029.10.1016/j.jfoodeng.2014.03.029
  24. 24. Wimmerstedt, R. & Hager, J. (1996). Steam drying – modelling and applications. Drying Technol. 14(5), 1099–1119. DOI: 10.1080/07373939608917141.10.1080/07373939608917141
  25. 25. Hong, S., Ryu, C., Ko, H.S., Ohm, T.I. & Chae, J.S. (2013). Process consideration of fry-drying combined with steam compression for efficient fuel production from sewage sludge. Appl. Energy 103, 468–476. DOI: 10.1016/j.apenergy.2012.10.002.10.1016/j.apenergy.2012.10.002
  26. 26. Iyota, H., Nishimura, N., Yoshida, M. & Nomura, T. (2001). Simulation of superheated steam drying considering initial steam condensation. Drying Technol. 19(7), 1425–1440. DOI: 10.1081/DRT-100105298.10.1081/DRT-100105298
  27. 27. Hakli, O., Dumanli, A.G., Nalbant, A., Okyay, F. & Yürüm, Y. (2010). The Conversion of Low-rank Kilyos Coal to Nitrogeneous. Energy Sources, Part A: Recovery, Utilization, and Environm. Effects 33(2), 164–170. DOI: 10.1080/15567030902937242.10.1080/15567030902937242
  28. 28. Bergins, C. & Strauss, K. (2007). Advanced processes for low rank coal drying and dewatering in high efficient power plants. Inter. J. Global Energy Issues 28(2/3), 241–263. DOI: 10.1504/IJGEI.2007.015878.10.1504/IJGEI.2007.015878
  29. 29. Pinches Industry Pty Ltd. (2014). Retrieved October 10, 2014, from http://www.pinches.com.au/
  30. 30. Hamawand, I. (2013). Drying Steps under Superheated Steam: A Review and Modelling. J. Energy Environ. Res. 3(2), 107–125. DOI: 10.5539/eer.v3n2p107.10.5539/eer.v3n2p107
  31. 31. Weber, S., Briensy, C., Berrutiz, B., Chan, E.W. & Gray, M.R. (2007, May). Agglomerate Behaviour in Fluidized Beds. Refereed Proceedings The 12th International Conference on Fluidization – New Horizons in Fluidization Engineering. Retrieved April 20, 2015, from http://dc.engconfintl.org/fluidization_xii/103/
Language: English
Page range: 5 - 14
Published on: Nov 27, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ihsan Hamawand, Wilton Pereira da Silva, Friederike Eberhard, Diogenes L. Antille, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.