Have a personal or library account? Click to login
Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III) ions from Aqueous Solution Cover

Biosorption Performance of Biodegradable Polymer Powders for the Removal of Gallium(III) ions from Aqueous Solution

Open Access
|Sep 2015

References

  1. 1. Moskalyk, R.R. (2003). Gallium: the backbone of the electronics industry. Min. Eng. 16 921–929. DOI: http://dx.doi.org/10.1016/j.mineng.2003.08.003
  2. 2. Bina, G., Niti, M., Zareena, B.I. & Indu, S. (2007). Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy 87, 18–26. DOI: 10.1016/j.hydromet.2007.01.001.10.1016/j.hydromet.2007.01.001
  3. 3. Wu, C.C. & Liu, H.M. (2009). Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry. J. Hazard. Mat. 163, 1239–1245. DOI: 10.1016/j.jhazmat.2008.07.093.10.1016/j.jhazmat.2008.07.093
  4. 4. Wu, X., Wu, S., Qin, W., Ma, X., Niu, Y., Lai, S., Yang, C., Jiao, F. & Ren, L. (2012). Reductive leaching of gallium from zinc residue. Hydrometallurgy 113–114, 195–199. DOI:10.1016/j.hydromet.2011.11.016.10.1016/j.hydromet.2011.11.016
  5. 5. Yu, H.S. & Liao, W.T. (2011). Gallium: Environmental pollution and Health Effects. In J. Nriagu (Ed.), Reference Module in Earth Systems and Environmental Sciences, Encyclopedia of Environmental Health (pp. 829–833). London, Elsevier.
  6. 6. Chowdhury, S., Swenson, B.L,, Wong, M.H. & Mishra, U.K. (2013). Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28, 1–8. DOI: 10.1088/0268-1242/28/7/074014.10.1088/0268-1242/28/7/074014
  7. 7. Kramer, D.A. (2003). Gallium. In G.A. Norton & C.G. Groat (Eds.), Mineral Commodity Summaries (pp. 66–67). Reston, VA. U.S. Government Printing Office.
  8. 8. Jaskula, B.W. (2014). Mineral commodity summaries 2012: U.S. Geological Survey. Washington, USA: U.S. Government Printing Office.
  9. 9. Gutierrez, B.P.C., Pazos, C. & Coca, J. (2002). Solvent extraction equilibrium of gallium from hydrochloric acid solutions by amberlite LA-2. J. Chem. Technol. Biotechnol. 61, 241–245. DOI: 10.1002/jctb.280610310.10.1002/jctb.280610310
  10. 10. Mujeriego, R. & Asano, T. (1999). The role of advanced treatment in wastewater reclamation and reuse. Water Sci. Technol. 40(4–5), 1–9. DOI: 10.1016/S0273-1223(99)00479-5.10.1016/S0273-1223(99)00479-5
  11. 11. Mahamuni, S.V., Wadgaonkar, P.P. & Anuse, M.A. (2010). Liquid–liquid extraction and recovery of gallium(III) from acid media with 2-octylaminopyridine in chloroform: Analysis of bauxite ore. J. Serbian Chem. Soc. 75(8), 1099–1113. DOI: 10.2298/JSC090630072M.10.2298/JSC090630072M
  12. 12. Huang, C.J., Yang, B.M., Chen, K.S., Chang, C.C. & Kao, C.M. (2011) Application of membrane technology on semiconductor wastewater reclamation: A pilot-scale study. Desal. 278(1–3), 203–210. DOI: 10.1016/j.desal.2011.05.032.10.1016/j.desal.2011.05.032
  13. 13. Srinivasa Rao, P., Kalyani, S., Suresh Reddy, K.V.N. & Krishnaiah, A. (2005). Comparison of biosorption of Nickel(II) and Copper(II) ions from aqueous solutions by Sphaeroplea algae and acid treated Sphaeroplea algae. Sep. Sci. Technol. 40, 3149–3156. DOI: 10.1080/01496390500385350.10.1080/01496390500385350
  14. 14. Volesky, B. (1994). Advances in biosorption of metals: Selection of biomass types FEMS. Microbiol. Rev. 14, 291–302. DOI: 10.1111/j.1574-6976.1994.tb00102.x.10.1111/j.1574-6976.1994.tb00102.x7917417
  15. 15. Xiao, D.Z., Bin, L., Bo, Zhu, Kuang, R., Kuang, X., Xu, B. & Ma, M. (2010). Crayfish Carapace Micro-powder (CCM): A Novel and Efficient Adsorbent for Heavy Metal Ion Removal from Wastewater. Water 2, 257–272. DOI: 10.3390/w2020257.10.3390/w2020257
  16. 16. Varma, A.J., Deshpande, S.V. & Kennedy, J.F. (2004). Metal complexation by chitosan and its derivatives: A review. Carborhydr. Polym. 55, 77–93. DOI: 10.1016/j.carbpol.2003.08.005.10.1016/j.carbpol.2003.08.005
  17. 17. Song, Q.P., Wang, C., Zhang, Z. & Gao, J. (2014). Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Sep. Sci. Technol. 49(8), 1235–1243. DOI: 10.1080/01496395.2013.872656.10.1080/01496395.2013.872656
  18. 18. He, Z., Branford-White, C., Zhou, Y., Nie, H. & Zhu, L. (2010). Papain Adsorption on Chitosan-Coated Nylon-Based Immobilized Metal Ion (Cu2+, Ni2+, Zn2+, Co2+) Affinity Membranes. Sep. Sci. Technol. 45(4), 525–534. DOI: 10.1080/01496390903484784.10.1080/01496390903484784
  19. 19. Kalyani, S., Ajithapriya, J., Srinivasa Rao, P. & Krishnaiah, A. (2005). Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent. Sep. Sci. Technol. 40, 1483–1495. DOI: 10.1080/01496390801940762.10.1080/01496390801940762
  20. 20. Liu, C.X. & Bai, R.B. (2006). Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J. Memb. Sci. 284, 313–322. DOI: 10.1016/j.memsci.2006.07.045.10.1016/j.memsci.2006.07.045
  21. 21. Cadogan, E.I, Lee, C.H., Popuri, S.R. & Lin, H.Y. (2014). Effect of Solvent on Physico-Chemical Properties and Antibacterial Activity of Chitosan Membranes. Int. J. Polym. Mater. 63(14), 708–715. DOI: 10.1080/00914037.2013.867264.10.1080/00914037.2013.867264
  22. 22. Song, Q., Wang, C., Zhang. Z. & Gao, J. (2014). Adsorption of Cu(II) and Ni(II) using a Novel Xanthated Carboxymethyl Chitosan. Sep. Sci. Technol. 49(8), 1235–1243. DOI: 10.1080/01496395.2013.872656.10.1080/01496395.2013.872656
  23. 23. Cadogan, E.I, Lee, C.H., Popuri, S.R. & Lin, H.Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and Characterization. Int. Biodeterior. Biodegrad. 95(A), 232–240. DOI: http://dx.doi.org/10.1016/j.ibiod.2014.06.003
  24. 24. Ji, Y., Gao, H., Sun, J. & Fang, C. (2011). Experimental probation on the binding kinetics and thermodynamics of Au-(III) onto Bacillus subtilis. Chem. Eng. J. 172, 122–128. DOI: 10.1016/j.cej.2011.05.077.10.1016/j.cej.2011.05.077
  25. 25. Ho, Y.S. & McKay, G. (2000). The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 34(3), 735–742. DOI: 10.1016/S0043-1354(99)00232-8.10.1016/S0043-1354(99)00232-8
  26. 26. Vijaya, Y., Popuri, S.R., Boddu, V.M. & Krishnaiah, A. (2008). Modified chitosan and calcium alginate biopolymer sorbents for the removal of nickel (II) through adsorption, Carbohydr. Polym. 72, 261–271. DOI: 10.1016/j.carbpol.2007.08.010.10.1016/j.carbpol.2007.08.010
  27. 27. Ho, Y.S. & McKay, G. (1998). Kinetic models for the sorption of dye from aqueous solution by wood. Trans. Inst. Chem. Eng. Part B. 76,183–188. DOI: 10.1205/095758298529326.10.1205/095758298529326
  28. 28. Uğurlu, M. (2009). Adsorption of a textile dye onto activated sepiolite. Micropor. Mesopor. Mater. 119, 276–283. DOI: 10.1016/j.micromeso.2008.10.024.10.1016/j.micromeso.2008.10.024
  29. 29. Vanleugenhaghe, C., De Zoubov, N. & Pourbaix, M. (1974). Gallium. In M. Pourbaix (Ed.), Atlas of Electrochemical Equilibria in Aqueous Solutions (pp. 428–435). Texas, USA: Pergamon Press Ltd.
  30. 30. Ng, C., Losso, J.N., Marshall, W.E. & Rao, R.M. (2002). Freundlich adsorption isotherms of agricultural by-product-based powdered activated carbons in a geosmin–water system. Bioresour. Technol. 85(2), 131–135. DOI: 10.1016/S0960-8524(02)00093-7.10.1016/S0960-8524(02)00093-7
  31. 31. Tang, X.W., Wang, Y. & Li, Z.Z. (2009). Removal of Heavy Metal from Aqueous Solution using Chinese Loess Soil. In Advances in Environmental Geotechnics: International Geo-environmental Engineering Symposium, 8–10 September 2009 (pp. 313–319). Hangzhou China: Springer Berlin Heidelberg.
  32. 32. Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V. & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 22, 249–275. DOI: 10.1016/j.apgeochem.2006.09.010.10.1016/j.apgeochem.2006.09.010
  33. 33. Clement, T.P., Sun, Y., Hooker, B.S. & Petersen, J.N. (1998). Modeling Multispecies Reactive Transport in Groundwater Aquifers. Ground Water Monit. R. 18(2), 79–92.10.1111/j.1745-6592.1998.tb00618.x
  34. 34. Jeppu, G. & Clement, T.P. (2012). A modified Langmuir-Freundlich isotherm model for simulating pH-dependent adsorption effects. J. Contam. Hydrol. 129–130, 46–53. DOI: 10.1016/j.jconhyd.2011.12.001.10.1016/j.jconhyd.2011.12.00122261349
  35. 35. Turiel, E., Perez-Conde, C. & Martin-Esteban, A. (2003). Assessment of the crossreactivity and binding sites characterization of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm. Analyst. 128(2), 137–141. DOI: 10.1039/B210712K.10.1039/b210712k12625553
  36. 36. Umpleby, R.J., Baxter, S.C., Chen, Y., Shah, R.N. & Shimizu, K.D. (2001). Characterization of Molecularly Imprinted Polymers with the Langmuir-Freundlich Isotherm. Analyt. Chem. 73(19), 4584–4591. DOI: 10.1021/ac0105686.10.1021/ac0105686
  37. 37. Mohaylov, I. & Distin, P.A. (1995). Gallium solvent extraction from acidic solutions with octyl phenyl acid phosphate (OPAP) reagents. Hydrometallurgy 37, 221–234. DOI: 10.1016/0304-386X(94)00045-5.10.1016/0304-386X(94)00045-5
Language: English
Page range: 124 - 132
Published on: Sep 19, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Ching-Hwa Lee, Hang-Yi Lin, Elon I. Cadogan, Srinivasa R. Popuri, Chia-Yuan Chang, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.