Have a personal or library account? Click to login
Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells Cover

Influence of nanocrystalline structure and surface properties of TiO2 thin films on the viability of L929 cells

Open Access
|Sep 2015

References

  1. 1. Branemark, P.I., Breine, U., Adell, R., Hansson, B., Lindström, J. & Ohlsson, A. (1969). Intra-osseous anchorage of dental prostheses. I. Experimentalstudies. Scand J Plast Reconstr Surg. 3, 81–100. DOI: 10.3109/02844316909036699.10.3109/02844316909036699
  2. 2. Hanawa, T. (1991). Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12, 767–774. DOI: 10.1016/0142-9612(91)90028-9.10.1016/0142-9612(91)90028-9
  3. 3. Brunette, D.M., Tengvall, P., Textor, M. & Thomsen, P. (2001). Titanium in medicine. DOI: 10.1007/978-3-642-56486-4.10.1007/978-3-642-56486-4
  4. 4. Choubey, A., Balasubramaniam, R. & Basu, B. (2004). Effect of replacement of V by Nb and Fe on the electrochemical and corrosion behavior of Ti-6Al-4V in simulated physiological environment. J. All. Comp. 381, 288–294. DOI: 10.1016/j.jallcom.2004.03.096.10.1016/j.jallcom.2004.03.096
  5. 5. Azevedo, C.R.F. (2003). Failure analysis of a commercially pure titanium plate for osteosynthesis. Engine. Fail. Anal. 10, 153–164. DOI:10.1016/S1350-6307(02)00067-5.10.1016/S1350-6307(02)00067-5
  6. 6. Eisenbarth E., Valten D., Mullee M., Thull R. & Breme J. (2004). Biocompatibility of β-stabilizing elements of titanium alloys. Biomaterials 25, 5705–5713. DOI:10.1016/j.biomaterials.2004.01.021.10.1016/j.biomaterials.2004.01.02115147816
  7. 7. Zitter, H. & Plenk, H.J. (1987). The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J. Biomed Mater. Res. 21, 881–896. DOI: 10.1002/jbm.820210705.10.1002/jbm.8202107053611146
  8. 8. Cui, W.F., Jin, L. & Zhou, L. (2013). Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy. Materi. Sci. Engine.: C 33(7), 3775–3779. DOI: 10.1016/j.msec.2013.05.011.10.1016/j.msec.2013.05.01123910276
  9. 9. Taubert, A., Mano, J.F., Rodríguez-Cabello, J.C. (2013). Biomater. Surf. Sci. DOI: 10.1002/9783527649600.10.1002/9783527649600
  10. 10. Yamauchi, R., Morita, A. & Tsuji, T. (2000). Pacemaker dermatitis from titanium. Cont. Dermat. 42, 52–53. PMID: 10644034.
  11. 11. Thomas, P., Bandl, W.D., Thomas, P., Bandl, W., Maier, S., Summer, B. & Przybilla, B. (2006). Hypersensitivity to titanium osteosynthesis with impaired fracture healing, eczema, and T-cell hyperresponsiveness in vitro: case report and review of the literature. Contact Dermatitis 55, 199–202. DOI: 10.1111/j.1600-0536.2006.00931.x.10.1111/j.1600-0536.2006.00931.x16958916
  12. 12. Verbov, J. (1985). Pacemaker contact sensitivity. Cont. Dermat. 12, 173. DOI: 10.1111/j.1600-0536.1985.tb01089.x.10.1111/j.1600-0536.1985.tb01089.x
  13. 13. Brun, R. & Hunziker, N. (1980). Pacemaker dermatitis. Cont. Dermat. 6, 212–213. DOI: 10.1111/j.1600-0536.1992.tb00867.x.10.1111/j.1600-0536.1992.tb00867.x
  14. 14. Viraben, R., Boulingues, S. & Alba, C. (1995). Granulomatous dermatitis after implantation of a titanium containing pacemaker. Cont. Dermat. 33, 437. DOI: 10.1111/j.1600-0536.1995.tb02089.x.10.1111/j.1600-0536.1995.tb02089.x
  15. 15. Yamauchi, R., Morita, A. & Tsuji, T. (2000). Pacemarker dermatitis from titanium. Cont. Dermat. 42, 52–53.
  16. 16. Schuh, A., Thomas, P., Kachler, W., Göske, J., Wagner, L., Holzwarth, U. & Forst, R. (2005). Allergic potential of titanium implants. Orthopade 34, 327–333. DOI: 10.1007/s00132-005-0764-2.10.1007/s00132-005-0764-2
  17. 17. Suohonen, R. & Kanerva, L. (2001). Allergic contact dermatitis caused by palladium on titanium spectacle frames. Cont. Dermat. 45, 244–245. DOI: 10.1034/j.1600-0536.2001.440409-13.x.10.1034/j.1600-0536.2001.440409-13.x
  18. 18. Kaczmarek, D., Domaradzki, J., Wojcieszak, D., Prociów, E., Mazur, M., Placido, F. & Lapp, S. (2012). Hardness of nanocrystalline TiO2 thin films, J. Nano Res. 18/19, 195–200. DOI: 10.4028/www.scientific.net/JNanoR.18-19.195.10.4028/www.scientific.net/JNanoR.18-19.195
  19. 19. Domaradzki, J., Kaczmarek, D., Prociow, E., Borkowska, A., Schmeisser, D. & Beuckert, G. (2006). Microstructure and optical properties of TiO2 thin films prepared by low pressure hot target reactive magnetron sputtering. Thin Sol. Films 513, 269–274. DOI: 10.1016/j.tsf.2006.01.049.10.1016/j.tsf.2006.01.049
  20. 20. Mazur, M., Wojcieszak, D., Kaczmarek, D., Domaradzki, J., Zatryb, G., Misiewicz, J. & Morigiel, J. (2015). Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at. %) thin films. Opt. Mater. DOI: http://dx.doi.org/10.1016/j.optmat.2015.01.040.
  21. 21. Kwok, D.Y. & Neumann, A.W. (1999). Contact angle measurement and contact angle interpretation. Adv. Coll. Interfac. 81, 167–249. DOI: http://dx.doi.org/10.1016/S0001-8686(98)00087-6.
  22. 22. Sharfrin, E. & Zisman, W.A. (1960). Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers. J. Phys. Chem. 64, 519–524. DOI: 10.1021/j100834a002.10.1021/j100834a002
  23. 23. ISO/TC 172/SC 7/WG 3N30 Standard. (1998). Spectacle Lenses: Test Method for Abrasion Resistance.
  24. 24. Blacker, R., Bohling, D., Coda, M. & Kolosey, M. (2000). Development of intrinsically conductive antireflection coatings for the ophthalmic industry, 43rd Annual Technical Conference Proceedings, 15–20 April 2000. Society of Vacuum Coaters, (pp. 212–216). Denver, Colorado, USA.
  25. 25. I.S. EN ISO 10993-5 Standard. (2009). Biological evaluation of medical devices: Part 5: Tests for in vitro cytotoxicity.
  26. 26. Ciapetti, G., Cenni, E., Pratelli, L. & Pizzoferrato, A. (1993): In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14(5),359–64. DOI: http://dx.doi.org/10.1016/0142-9612(93)90055-7.
  27. 27. Denizot, F. & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89(2), 271–277. DOI:10.1016/0022-1759(86)90368-6.10.1016/0022-1759(86)90368-6
  28. 28. Garrelds, I.M., Zijstra, F.J., Tak, J.A., Bonta, I.L., Beckmann, I. & Efraim, B. (2005). A comparison between two methods for measuring tumor necrosis factor in biological fluids. Inflam. Res. C. 89–91. DOI: 10.1007/BF01991147.10.1007/BF01991147
  29. 29. Heravi, F., Ramezani, M., Poosti, M., Hosseini, M., Shajiei, A. & Ahrari, F. (2013). In Vitro Cytotoxicity Assessment of an Orthodontic Composite Containing Titanium-dioxide Nano-particles. J. Dent. Res. Dent. Clin. Dent. Prospect. 7(4): 192–198. DOI: 10.5681/joddd.2013.031.
  30. 30. Malkoc, S., Corekci, B., Ulker, H.E., Yalcin, M. & Sengun, A. (2010). Cytotoxic effects of orthodontic composites. Angle Orthod. 80, 571-6. DOI: 10.2319/092809-537.1.10.2319/092809-537.1
  31. 31. Powder Diffraction File, Joint Committee on Powder Diffraction Standards. (1967). ASTM, Philadelphia, PA, Card 21-1272 – PDF.
  32. 32. Finetti, P., Caffio, M., Cortigiani, B., Atrei, A. & Rovida, G. (2008). Mechanism of growth and structure of titanium oxide ultrathin films deposited on Cu(001). Surf. Sci. Vol. 602, p. 1101–1113. DOI:10.1016/j.susc.2008.01.016.10.1016/j.susc.2008.01.016
  33. 33. Chastain, J. (Ed.). (1992). Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Eden Prairie MN.
  34. 34. Mayer, J.T., Diebold, U., Madey, T.E. & Garfunkel, E. (1995). Titanium and reduced titania overlayers on titanium dioxide (101). J. Electr. Spectrosc. Relat. Phenom. Vol. 73, 1–11. DOI: 10.1016/0368-2048(94)02258-5.10.1016/0368-2048(94)02258-5
  35. 35. Moulder, J., Stickle, W., Sobol, P. & Bomben, K. (1995). Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc. United States of America. ISBN 0-9648124-1-X.
  36. 36. Mazur, M., Domaradzki, J., Wojcieszak, D., Kaczmarek, D. & Mazur P. (2014). Investigation of physicochemical properties of (Ti-V)Ox (4.3 at.% of V) functional thin films and their possible application in the field of transparent electronics. Appl. Surf. Sci. 304, 73–80. DOI: http://dx.doi.org/10.1016/j.apsusc.2014.01.073.
  37. 37. Chang H. & Wang Y. (2011). Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds, regenerative Medicine and Tissue Engineering - Cells and Biomaterials. ISBN 978-953-307-663-8. DOI: 10.5772/21983.10.5772/21983
  38. 38. Affrossman, S., Henn, G., O’Neill, S.A. & Pethrick, R.A., Stamm M. (1996). Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends, Macromolecules 29, 5010–5016. DOI: 10.1021/ma9516910.10.1021/ma9516910
  39. 39. Dalby, M.J., Giannaras, D., Riehle, M.O., Gadegaard, N., Affrossman, S. & Curtis, A.S.G. (2004). Rapid fibroblast adhesion to 27nm high polimer demixed nano-topography. Biomaterials 25, 77–83. DOI: 10.1016/S0142-9612(03)00475-7.10.1016/S0142-9612(03)00475-7
  40. 40. Wachesk, C.C., Pires, C.A.F., Ramos, B.C., Trava-Airoldi, V.J., Lobo, A.O., Pacheco-Soares, C., Marciano, F.R. & Da-Silva, N.S. (2013). Cell viability and adhesion on diamond-like carbon films containing titanium dioxide nanoparticles. Appl. Surf. Sci. 266, 176–181. DOI: 10.1016/j.apsusc.2012.11.124.10.1016/j.apsusc.2012.11.124
  41. 41. Scheers, M.E., Ekwall, B. & Dierickx, J.P. (2001). In vitro long-term cytotoxicity testing of 27 MEIC chemicals on HepG2 cells and comparison with acute human toxicity data. Toxicol. In Vitro 15, 153–161. DOI:10.1016/j.toxlet.2005.07.001.10.1016/j.toxlet.2005.07.00116111842
  42. 42. George, F. & Timbrell, A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters 160, 171–177F. DOI: 10.1371/journal.pone.0026908.10.1371/journal.pone.0026908321964322125603
  43. 43. Liua, S., Xua, L., Zhangb, T., Renc, G. & Yanga, Z. (2010). Oxidative stress and apoptosis induced by nanosized titanium dioxide in PC12 cells. Toxicology 267, 172–177. DOI: 10.1016/j.tox.2009.11.012.10.1016/j.tox.2009.11.01219922763
  44. 44. Gurr, J.R., Wang, A.S., Chen, C.H., Jan, K.Y. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213, 66–73. DOI: 10.1016/j.tox.2005.05.007.10.1016/j.tox.2005.05.00715970370
  45. 45. Horie, M., Nishio, K., Fujita, K., Kato, H., Endoh, S., Suzuki, M., Nakamura, A., Miyauchi, A., Kinugasa, S., Yamamoto, K., Iwahashi, H., Murayama, H., Niki, E. & Yoshida, Y. (2010). Cellular responses by stable and uniform ultrafine titanium dioxide particles in culture-medium dispersions when secondary particle size was 100 nm or less. Toxicology in Vitro 24, 1629–1638. DOI:10.1016/j.tiv.2010.06.003.10.1016/j.tiv.2010.06.00320541599
  46. 46. Park, S., Lee, Y.K., Jung, M., Kim, K.H., Chung, N., Ahn, E.K., Lim, Y., Lee, K.H. (2007). Cellular toxicity of various inhalable metal nanoparticles on human alveolar epithelial cells. InhalToxicol 19 (Suppl. 1), 59–65. DOI: 10.1080/08958370701493282.10.1080/0895837070149328217886052
  47. 47. Sayes, C.M., Wahi, R., Kurian, P.A., Liu, Y., West, J.L., Ausman, K.D., Warheit, D.B. & Colvin, V.L. (2006). Correlating nanoscaletitania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. ToxicolSci. 92, 174–185. DOI: 10.1093/toxsci/kfj197.10.1093/toxsci/kfj19716613837
  48. 48. Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C., Jiang, J., Biswas, P., Schlager, J.J. & Hussain, M.S. (2008). Crystal structure mediates mode of cell death in TiO2 nanotoxicity. An Interdisciplinary Forum for Nanoscale Science and Technology. J. Nanopart. Res. DOI: 10.1007/s11051-008-9523-8.10.1007/s11051-008-9523-8
Language: English
Page range: 33 - 39
Published on: Sep 19, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Małgorzata Osękowska, Ewa Karuga-Kuźniewska, Damian Wojcieszak, Michał Mazur, Agata Poniedziałek, Danuta Kaczmarek, Maria Szymonowicz, Zbigniew Rybak, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.