Have a personal or library account? Click to login
One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst Cover

One-dimensional isothermal multicomponent diffusion-reaction model and its application to methanol synthesis over commercial Cu-based catalyst

Open Access
|Mar 2015

References

  1. 1. Xie, K.C. & Fang, D.Y. (2010). Methanol technology. Beijing, China: Chemical Industry Press. (Chinese reference)
  2. 2. Caulkin, R., Ahmad, A., Fairweather, M., Jia, X. & Williams, R.A. (2007). An investigation of sphere packed shell-side columns using a digital packing algorithm. Comput. Chem. Eng. 31(12), 1715-1724. DOI: 10.1016/j.compchemeng.2007.03.014.10.1016/j.compchemeng.2007.03.014
  3. 3. Ma, H.F., Ying, W.Y. & Fang, D.Y. (2008). Simulation of a combined converter for methanol synthesis. J. East. China. U. Sci. Technol. 34, 149-153. from http://www.cnki.com.cn/Article/CJFDTotal-HLDX200802000.htm (Chinese reference).
  4. 4. Aris, R. (1975). The mathematical theory of diffusion and reaction in permeable catalysts. London, UK: Clarendon Press.
  5. 5. Wood, J. & Gladden, L.F. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 1. Fickian diffusion and pseudo-first-order reaction kinetics. Chem. Eng. Sci. 57(15), 3033-3045. DOI: 10.1016/S0009-2509(02)00183-5.10.1016/S0009-2509(02)00183-5
  6. 6. Wood, J., Gladden, L.F. & Keil, F.J. (2002). Modelling diffusion and reaction accompanied by capillary condensation using three-dimensional pore networks. Part 2. Dusty gas model and general reaction kinetics. Chem. Eng. Sci. 57(15), 3047-3059. DOI: 10.1016/S0009-2509(02)00184-7.10.1016/S0009-2509(02)00184-7
  7. 7. Mariani, N.J., Mocciaro, C., Keegan, S.D., Martínez, O.M. & Guillermo, F.B. (2009). E valuating the effectiveness factor from a 1D approximation fitted at high Thiele modulus: Spanning commercial pellet shapes with linear kinetics. Chem. Eng. Sci. 64(11), 2762-2766. DOI: 10.1016/j.ces.2009.02.044.10.1016/j.ces.2009.02.044
  8. 8. Aumo, J., Wärnå, J., Salmi, T. & Murzin, D.Y. (2006). Interaction of kinetics and internal diffusion in complex catalytic three-phase reactions: Activity and selectivity in citral hydrogenation. Chem. Eng. Sci. 61(2), 814-822. DOI: 10.1016/j. ces.2005.07.036.
  9. 9. Lee, J.K., Ko, J.B. & Kim, D.H. (2004). Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor. Appl. Catal., A. 278(1), 25-35. DOI: 10.1016/j. apcata.2004.09.022.
  10. 10. Guo, W.Y., Wu, W.Z., Luo, M. & Xiao, W.D. (2013). Modeling of diffusion and reaction in monolithic catalysts for the methanol-to-propylene process. Fuel Process. Technol. 108, 133-138. DOI: 10.1016/j.fuproc.2012.06.005.10.1016/j.fuproc.2012.06.005
  11. 11. Pan, T.S. & Zhu, B.C. (1998). Study on diffusion-reaction process inside a cylindrical catalyst pellet. Chem. Eng. Sci. 53(5), 933-946. DOI: 10.1016/S0009-2509(97)00385-0.10.1016/S0009-2509(97)00385-0
  12. 12. Zhang, L. Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Dehydration of methanol to dimethyl ether over γ-Al2O3 catalyst: Intrinsic kinetics and effectiveness factor. Can. J. Chem. Eng. 91(9), 1538-1546. DOI: 10.1002/cjce.21760.10.1002/cjce.21760
  13. 13. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (I) Multicomponent diffusion model and numerical computing method. J. Chem. Ind. Eng. 44, 33-40. from http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401003.htm (Chinese reference).
  14. 14. Zhu, B.C., Song, W.D., Fang, D.Y. & Lu, D.Q. (1984). Multi-component diffusion model for effectiveness factor of porous catalyst (II) Effe ctiveness factor of high temperature slight reaction. J. Chem. Ind. Eng, 44, 41-50. form http://www.cnki.com.cn/Article/CJFDTotal-HGSZ198401004.htm (Chinese reference).
  15. 15. Li, T., Xu, M.S., Zhu, B.C., Fang, D.Y. & Ying, W.Y. (2009). Reaction-diffusion model for irregularly shaped ammonia synthesis catalyst and its verification under high pressure. Ind. Eng. Chem. Res. 48(19), 8926-8933. DOI: 10.1021/ ie9001266.10.1021/ie9001266
  16. 16. Permikin, D.V. & Zverev, V.S. (2013). Mathematical model on surface reaction diffusion in the presence of front chemical reaction. Int. J. Heat Mass Transfer. 57(1), 215-221. DOI: 10.1016/j.ijheatmasstransfer.2012.10.024.10.1016/j.ijheatmasstransfer.2012.10.024
  17. 17. Lommerts, B.J., Graaf, G.H. & Beenackers, A.A.C.M. (2000). Mathe matical modeling of internal mass transport limitations in methanol synthesis. Chem. Eng. Sci. 55(23), 5589-5598. DOI: 10.1016/S0009-2509(00)00194-9.10.1016/S0009-2509(00)00194-9
  18. 18. Lei, K., Ma, H.F., Zhang, H.T., Ying, W.Y. & Fang, D.Y. (2013). Intrinsic kinetics of methanol synthesis over catalyst SC309. Nat. Gas. Chem. Ind. 3, 1-5. from http://www.cnki.com.cn/Article/CJFDTotal-TRQH201303000.htm (Chinese reference).
  19. 19. Graaf, G.H., Scholtens, H., Stamhuis, E.J. & Beenackers A.A.C.M. (1990). Intr a-particle diffusion limitations in low- -pressure methanol synthesis. Chem. Eng. Sci. 45(4), 773-783. DOI: 10.1016/0009-2509(90)85001-T.10.1016/0009-2509(90)85001-T
  20. 20. Graaf, G.H., Stamhuis, E.J. & Beenackers, A.A.C.M. (1988). Kinetics of the low-pressure methanol synthesis. Chem. Eng. Sci. 43(12), 3185-3195. DOI: 10.1016/0009-2509(88)85127-3.10.1016/0009-2509(88)85127-3
  21. 21. Patterson, A.L. (1939). The Scherrer Formula for X-Ray Particle Size Determination. Phys. Rev. 56(10), 978-982. DOI: 10.1103/PhysRev.56.978.10.1103/PhysRev.56.978
  22. 22. Aris, R. (1995). On shape factors for irregular particles-I: The steady state problem. Diffusion and reaction. Chem. Eng. Sci. 50(24), 3899-3903. DOI: 10.1016/0009-2509(96)81819-7.10.1016/0009-2509(96)81819-7
  23. 23. Luss, D. & Amundson, N.R. (1967). On a conjecture of Aris: proof and remarks. AlChE J. 13(4), 759-763. DOI: 10.1002/aic.690130431.10.1002/aic.690130431
  24. 24. Fogler, H.S. (2005). Elements of Chemical Reaction Engineering. New Jersey, USA: Prentice-Hall International Inc.
  25. 25. Wheeler, A. (1950). Reac tion rate and selectivity in catalyst pores (pp. 249-327). Adv. Catal.. Vol. New York, USA: Academic Press Inc.
  26. 26. Mason, E.A., Malinauskas, A.P. & Evans, R.B. (1967). Flow and diffusion of gases in porous media. J. Chem. Phys. 46, 3199-3216. DOI: 10.1063/1.1841191.10.1063/1.1841191
  27. 27. Zhu, B.C. (2001). Chemical Reaction Engineering. Beijing, China: Chemical Industry Publishing Company. (Chinese reference)
  28. 28. Reid, R.C., Prausnitz, J.M. & Poling, B.E. (1987). The p roperties of gases and liquids. New York, USA: McGraw Hill Book Co.
  29. 29. Curtiss, C.F. & Hirschfelder, J.O. (1949). Transport properties of multicomponent gas mixture. J. Chem. Phys. 17, 553-555. DOI: 10.1063/1.1747319.10.1063/1.1747319
  30. 30. Fuller, E.N., Schettler, P.D. & Giddings, J.C. (1966). A new method for prediction of binary gas-phase diffusion coeffi- cients. Ind. Eng. Chem. 58(5), 18-27. DOI: 10.1021/ie50677a007.10.1021/ie50677a007
  31. 31. Shah, R.K. & London, A.L. (1978). Laminar Flow Forced Convection in Ducts. New York, USA: Academic Press.
  32. 32. Chen, J., Yang, H., Wang, N., Ring, Z. & Dabros, T. (2008). Mathematical modeling of monolith catalysts and reactors for gas phase reactions. Appl. Catal. A. 345(1), 1-11. DOI: 10.1016/j.apcata.2008.04.010.10.1016/j.apcata.2008.04.010
  33. 33. Kim, D.H. & Lee, J. (2004). A robust iterative method of computing effectiveness factors in porous catalysts. Chem. Eng. Sci. 59(11), 2253-2263. DOI: 10.1016/j.ces.2004.01.056.10.1016/j.ces.2004.01.056
  34. 34. Lee, J. & Kim, D.H. (2005). An im proved shooting method for computation of effectiveness factors in porous catalysts. Chem. Eng. Sci. 60(20), 5569-5573. DOI: 10.1016/j. ces.2005.05.027.
Language: English
Page range: 103 - 109
Published on: Mar 25, 2015
Published by: West Pomeranian University of Technology, Szczecin
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Kun Lei, Hongfang Ma, Haitao Zhang, Weiyong Ying, Dingye Fang, published by West Pomeranian University of Technology, Szczecin
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.