Have a personal or library account? Click to login
The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review Cover

The Influence of Hyperoxia On Heat Shock Proteins Expression and Nitric Oxide Synthase Activity – the Review

Open Access
|Jul 2017

References

  1. 1. Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ. The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci U S A. 2005 9;102(32):11131-6;10.1073/pnas.0504878102118358216061801
  2. 2. Gnaiger E, Steinlechner-Maran R, Méndez G, Eberl T, Margreiter R. Control of mitochondrial and cellular respiration by oxygen. J Bioenerg Biomembr. 1995;27(6):583-96;10.1007/BF021116568746845
  3. 3. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):1005-28;10.1152/ajplung.2000.279.6.L100511076791
  4. 4. Knight JA. Review: Free radicals, antioxidants, and the immune system. Ann Clin Lab Sci. 2000;30(2):145-58;
  5. 5. Phaniendra A, Jestadi DB, Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 2015;30(1):11-26;10.1007/s12291-014-0446-0431083725646037
  6. 6. Neuzil J, Gebicki JM, Stocker R. Radical-induced chain oxidation of proteins and its inhibition by chain-breaking antioxidants. Biochem J. 1993;293:601-6;10.1042/bj293060111344088352726
  7. 7. Macario AJL, Conway de Macario E. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci 2007;12:2588-600;10.2741/225717127265
  8. 8. Lindquist S. The heat-shock response. Annu. Rev. Biochem. 1986;55:1151-1191;10.1146/annurev.bi.55.070186.0054432427013
  9. 9. M.P. Mayer, B. Bukau, Hsp70 chaperones: cellular functions and molecular mechanism, Cell. Mol. Life Sci. 2005;62:670-684;10.1007/s00018-004-4464-6277384115770419
  10. 10. Tanaka K, Tanaka Y, Namba T, Azuma A, Mizushima T. Heat shock protein 70 protects against bleomycin-induced pulmonary fibrosis in mice. Biochem Pharmacol 2010;80:920-31;10.1016/j.bcp.2010.05.02520513440
  11. 11. Jee H. Size dependent classification of heat shock proteins: a mini-review. J Exerc Rehabil. 2016;12(4):255-9;10.12965/jer.1632642.321503138327656620
  12. 12. Xu Q. Role of heat shock proteins in atherosclerosis. Arterioscler Thromb Vasc Biol 2002;22:1547-1559;10.1161/01.ATV.0000029720.59649.50
  13. 13. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829-37;10.1093/eurheartj/ehr304
  14. 14. Dennog C, Radermacher P, Barnett YA, Speit G. Antioxidant status in humans after exposure to hyperbaric oxygen. Mutat Res. 1999;428 (1-2):83-9;10.1016/S1383-5742(99)00034-4
  15. 15. Ueng SW, Yuan LJ, Lin SS, Niu CC, Chan YS, Wang IC, Yang CY, Chen WJ. Hyperbaric oxygen treatment prevents nitric oxide-induced apoptosis in articular cartilage injury via enhancement of the expression of heat shock protein 70. J Orthop Res. 2013;31(3):376-84;10.1002/jor.2223522991091
  16. 16. Ni XX, Ni M, Fan DF, Sun Q, Kang ZM, Cai ZY, Liu Y, Liu K, Li RP, Xu WG. Heat-shock protein 70 is involved in hyperbaric oxygen preconditioning on decompression sickness in rats. Exp Biol Med (Maywood). 2013;238(1):12-22;10.1258/ebm.2012.01210123479759
  17. 17. Hosokawa N, Hirayoshi K, Nakai A, Hosokawa Y, Marui N, Yoshida M, Sakai T, Nishino H, Aoike A, Kawai K, Nagata K. Flavonoids inhibit the expression of heat shock proteins. Cell Struct Funct 1990;15:393;10.1247/csf.15.3932085852
  18. 18. Ghosh A, Chawla-Sarkar M, Stuehr DJ. Hsp90 interacts with inducible NO synthase client protein in its heme-free state and then drives heme insertion by an ATP-dependent process. FASEB J 2011;25:2049-60;10.1096/fj.10-180554310102721357526
  19. 19. Huang G, Diao J, Yi H, Xu L, Xu J, Xu W. Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons. Redox Biol. 2016;10:108-118;10.1016/j.redox.2016.09.011505426627721085
  20. 20. Loboda A, Jazwa A, Grochot-Przeczek A, Rutkowski AJ, Cisowski J, Agarwal A, Jozkowicz A, Dulak J. Heme oxygenase-1 and the vascular bed: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2008;10:1767-1812;10.1089/ars.2008.204318576916
  21. 21. S. Tsuchihashi, C. Fondevila, J.W. Kupiec-Weglinski, Heme oxygenase system in ischemia and reperfusion injury, Ann. Transplant. 9 (2004) 84-87;
  22. 22. Huang G, Xu J, Xu L, Wang S, Li R, Liu K, Zheng J, Cai Z, Zhang K, Luo Y, Xu W. Hyperbaric oxygen preconditioning induces tolerance against oxidative injury and oxygen-glucose deprivation by up-regulating heat shock protein 32 in rat spinal neurons. PLoS One. 2014;9(1):e85967;10.1371/journal.pone.0085967389500924465817
  23. 23. Lin CD, Wei IH, Lai CH, Hsia TC, Kao MC, Tsai MH, Wu CH, Tsai MH. Hyperbaric oxygen upregulates cochlear constitutive nitric oxide synthase. BMC Neurosci. 2011;12:21;10.1186/1471-2202-12-21
  24. 24. Cabigas BP, Su J, Hutchins W, Shi Y, Schaefer RB, Recinos RF, Nilakantan V, Kindwall E, Niezgoda JA, Baker JE. Hyperoxic and hyperbaricinduced cardioprotection: role of nitric oxide synthase 3. Cardiovasc Res. 2006;72(1):143-51;10.1016/j.cardiores.2006.06.031
  25. 25. Chavko M, Auker CR, McCarron RM. Relationship between protein nitration and oxidation and development of hyperoxic seizures. Nitric Oxide. 2003;9(1):18-23;10.1016/S1089-8603(03)00045-4
  26. 26. Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, Wang WZ, Zamboni WA. The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res. 2013;183(1):355-61;10.1016/j.jss.2013.01.00423485074
  27. 27. Alcaraz-García MJ, Albaladejo MD, Acevedo C, Olea A, Zamora S, Martínez P, Parra S. Effects of hyperoxia on biomarkers of oxidative stress in closed-circuit oxygen military divers. J Physiol Biochem. 2008;64(2):135-41;10.1007/BF0316824119043983
  28. 28. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;10.1080/1071576060108037117364955
  29. 29. Kalmar B, Greensmith L. Induction of heat shock proteins for protection against oxidative stress. Adv Drug Deliv Rev. 2009;61(4):310-8;10.1016/j.addr.2009.02.00319248813
  30. 30. Kaźmierczuk A. Kiliańska ZM. Plejotropowa aktywność białek szoku cieplnego. Postepy Hig Med. Dosw. 2009;63:502-521;
  31. 31. Takayama S, Reed J, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene 2003;22:9041-9047;10.1038/sj.onc.120711414663482
  32. 32. Powers MV, Workman P. Inhibitors of the heat shock response: biology and pharmacology. FEBS Lett 2007;581:3758-3769;10.1016/j.febslet.2007.05.04017559840
  33. 33. Reeg S, Jung T, Castro JP, Davies KJ, Henze A, Grune T. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med. 2016;99:153-166;10.1016/j.freeradbiomed.2016.08.002520114127498116
  34. 34. Daugaard M, Rohde M, JäätteläM. The heat shockk proteinę 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett 2007;581:3702-3710;10.1016/j.febslet.2007.05.03917544402
  35. 35. S.H. Park, N.Bolender, F.Eisele, Z.Kostova, J.Takeuchi, P.Coffino, et al. The Cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol. Biol. Cell 2007,18(1):153-165;10.1091/mbc.e06-04-0338175131217065559
  36. 36. M. Conconi, I.Petropoulos, I.Emod, E.Turlin, F.Biville, B.Friguet, Protection from oxidative inactivation of the 20S proteasome by heat-shock protein 90. Biochem. J. 1998,333:407-415;10.1042/bj333040712195999657982
  37. 37. Laskowska E. Small heat shock proteins - their role in apoptosis, carcinogenesis and diseaes connected with protein aggregation. Post. Biochem. 2007;53:19-26;
  38. 38. Arrigo AP, Virot S, Chaufour S, Firdaus W, Kretz-Remy C, Diaz-Latoud C. Hsp27 consolidates intracellular redox homeostasis by upholding glutathione in its reduced form and by decreasing iron intracellular levels. Antioxid Redox Signal. 2005;7:414-422;10.1089/ars.2005.7.41415706088
  39. 39. Seixas E, Gozzelino R, Chora A, Ferreira A, Silva G, Larsen R, Rebelo S, Penido C, Smith NR, Coutinho A, Soares MP. Heme oxygenase-1 affords protection against noncerebral forms of severe malaria. Proc Natl Acad Sci USA 2009;106:15837-15842;10.1073/pnas.0903419106272810919706490
  40. 40. Pamplona A, Ferreira A, Balla J, Jeney V, Balla G, Epiphanio S, Chora A, Rodrigues CD, Gregoire IP, Cunha-Rodrigues M, Portugal S, Soares MP, Mota MM. Heme oxygenase-1 and carbon monoxide suppress the pathogenesis of experimental cerebral malaria. Nat Med 2007;13:703- 710;10.1038/nm158617496899
  41. 41. Arai Y, Kubo T, Kobayashi K, et al. Adenovirus vector mediated gene transduction to chondrocytes: in vitro evaluation of therapeutic efficacy of transforming growth factor beta 1 and heat shock protein 70 gene transduction. J Rheumatol 1997;24:1787-1795;
  42. 42. Lechner M., Lirk P., Rieder J.: Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 2005;15:277-289;10.1016/j.semcancer.2005.04.00415914026
  43. 43. Ferrer, M.D., Sureda, A., Batle, J.M., Tauler, P., Tur, J.A., Pons, A. Scuba diving enhances endogenous antioxidant defenses in lymphocytesand neutrophils. Free Radic Res, 2007,41:274-281;10.1080/1071576060108037117364955
  44. 44. Potter CF, Kuo NT, Farver CF, McMahon JT, Chang CH, Agani FH, Haxhiu MA, Martin RJ. Effects of hyperoxia on nitric oxide synthase expression, nitric oxide activity, and lung injury in rat pups. Pediatr Res. 1999;45(1):8-13;10.1203/00006450-199901000-000039890602
  45. 45. Hoehn T, Felderhoff-Mueser U, Maschewski K, Stadelmann C, Sifringer M, Bittigau P, Koehne P, Hoppenz M, Obladen M, Bührer C. Hyperoxia causes inducible nitric oxide synthase-mediated cellular damage to the immature rat brain. Pediatr Res. 2003;54(2):179-84;10.1203/01.PDR.0000075220.17631.F112761356
  46. 46. Moncada S., Higgs A.E. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 1993;329:2002-2012;10.1056/NEJM1993123032927067504210
  47. 47. Sokołowska M, Włodek L. Dobre i złe strony tlenku azotu. Folia Cardiol 2001;8(5):467-477;
  48. 48. Xu F, Tai Fai F, Yung E, Yang M, A YIN J. Endothelial and inducible nitric oxide synthase gene and protein expression in hyperoxia-induced lung injury in premature rat. Acta Pharmacol Sin 2002;(23 Suppl):52-58.
DOI: https://doi.org/10.1515/phr-2017-0030 | Journal eISSN: 2084-0535 | Journal ISSN: 1734-7009
Language: English
Page range: 23 - 28
Submitted on: Nov 29, 2017
Accepted on: Mar 8, 2017
Published on: Jul 14, 2017
Published by: Polish Hyperbaric Medicine and Technology Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Jakub Szyller, Mariusz Kozakiewicz, Piotr Siermontowski, published by Polish Hyperbaric Medicine and Technology Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.