Have a personal or library account? Click to login
Trends in the development of unmanned marine technology Cover

Trends in the development of unmanned marine technology

By: Adam Olejnik  
Open Access
|Aug 2016

References

  1. 1. Olejnik A., Siermontowski P.: Will an underwater robot ever replace a diver? A poor progress or a great success?; PolHypRes No. 1(53)2016;10.1515/phr-2016-0001
  2. 2. Olejnik A.: Development of remotely controlled abyssal systems, PolHypRes No. 4(33)2010, ISSN 1734-7009 pp. 7-21;
  3. 3. Olejnik A.: The current state of the technology of remotely controlled abyssal vehicles; PolHypRes No. 5(28)2009, ISSN 1734-7009 pp. 23 – 46;
  4. 4. Collective work: European research at work. The seventh framework programme, Ed. European Commission, General Directorate for Scientific Research, Brussels 2014;
  5. 5. Collective work: Annual Report 2011, Saab AB Stockholm 2011;
  6. 6. Collective work: Chemsea findings, IOPAN Sopot 2014, ISBN 978-83-936609-1-9;
  7. 7. Stommel H.: The Slocum mission, Oceanography Volume 2, Issue 1 p. 22-25, ISSN 1042-8275, DOI http:/dx.doi.org/10.56670/oceanology.org;
  8. 8. Simoneti P.: Slocum Glider, Design and 1991 Filed Trials, Webb Research Corp. 1992;
  9. 9. Paschoa C.: Future ROV technology – subsea wireless control, Marine Technology News; www.marinetechnologynew.com;
  10. 10. Geder J., Ramamutri R., Preussner M., Palmisano J.S.: Manoeuvring performance of four-fin bio-inspired UUV; Conference Proceeding, Ocean 13 Conference, San Diego USA, NRL Publication release Number 13-1231-2626;
  11. 11. Tariov A., Kruszko S.: Unmanned underwater vehicles – current state, business potential, prospects for development; Elektronika – konstrukcje, technologie, zastosowania No. 10/2011, ISSN 033-2089, pp. 148-156;
  12. 12. Matejski M.: Movement modelling of underwater unmanned vehicles in experimental conditions; Publ. PTMiTH Gdynia 2011, ISBN 978-83-924989-7-1;
  13. 13. Graczyk T., Matejski M., Dramski M.: Maritime implementation research of an abyssal monitoring system; PolHypRes No. 2(32)2010, ISSN 1734-7009, pp. 37-47;
  14. 14. Graczyk T.: Unmanned remotely controlled abyssal vehicles – constructions and applications; Ship-construction Institute of the Szczecin University of Technology, Szczecin 1991;
  15. 15. Graczyk T.: The MAGIS remotely operated vehicle some design problems. Current report; Polish Maritime Reseach Vol. 9 Issue 3 (2002), ISSN 1233-2585, pp. 8-10;
  16. 16. Graczyk T.: Design issues on the example of unmanned abyssal vehicles, The Poznań University of Technology, Dissertations no. 421, Poznań 2008, ISSN 0551-6528;
  17. 17. Rowiński L.: Methodology of design of submersible vehicles at the stage of a concept with the use of computer techniques, Zeszyty Naukowe Politechniki Gdańskiej Budownictwo Okrętowe No. 59, Gdańsk 1993, ISSN 0373-869X;
  18. 18. Rowiński L.: Abyssal technique – abyssal vehicles, construction and equipment, Publ. WiB Gdańsk 2008, ISBN 978-83-928007-0-5;
  19. 19. Cichocki A.: The use of unmanned underwater vehicles in a quick environmental assessment for the needs of navigation safety, Transcopm XIV International Conference: Computer Systems Aided Science, Industry and Transport, Zakopane 2010, pp. 595-605;
  20. 20. Rowiński L.: Excavation of polymetallic nodes with the use of autonomous underwater vehicles, Górnictwo i Geoinżynieria No. 35 n. 4/1 2011, ISSN 1372-6702, pp. 331-339;
  21. 21. Rowiński L.: Computer trainer for abyssal vehicle pilots, Konferencja DMW Gdynia 2001, p. 1 pp. 21-27;
  22. 22. Rowiński L.: A new dimension of underwater tourism – underwater hotels, The 14th Scientific Conference of the Polish Society of Hyperbaric Medicine and Technique, Sopot 2012;
  23. 23. Rowiński L.: OPM Głuptak system as an element of an integrated OPM system, Rocznik Bezpieczeństwa Morskiego Rok VI, 2012, ISSN 1898-3189, pp. 291-302;
  24. 24. Biegański W., Kasiński A.: Imagine acquisition an underwater vision system with NIR and VIS illumination, Computer Science & Information Technology Volume 4 Issue 1 2014, ISSN 2231-5403, pp. 215-224;
  25. 25. Giergiel J., Kurc K., Szybicki D., Buratowski T., Trojnacki M.: Modelling of the dynamics of an underwater robot, Modelowanie Inżynierskie No. 45 Vol. 14 Year 2012, ISSN 1896-771X, pp. 45-51;
  26. 26. Biegański W., Ceranka J., Kasiński A.: Design, control and application of the underwater robot Isfar, Journal of Automation, Mobile Robotics & Intelligent Systems Volume 5 Issue 2, pp. 60-65;
  27. 27. Jaskot K., Babiaż A., Sroka M., Ściegienka P.: A prototype of an unmanned underwater vehicle – mechanical construction, operator's panel; Przegląd Elektrotechniczny R. 83, No. 8 2013, ISSN 0033-2097, pp. 52-67;
  28. 28. Sroka M., Ściegienka P., Babiarz A., Jaskot K.: A prototype of an unmanned underwater vehicle – system of stabilisation and course maintenance; Przegląd Elektrotechniczny R. 89, No. 9 2013, ISSN 0033-2097, pp. 205-217;
  29. 29. Szymak P.: A control-oriented movement model and a neuro-evolutional-fuzzy method of controlling unmanned vessels; Politechnika Krakowska, Seria Mechnika No. 504, Cracow 2015;
  30. 30. Internet sources:
DOI: https://doi.org/10.1515/phr-2016-0008 | Journal eISSN: 2084-0535 | Journal ISSN: 1734-7009
Language: English
Page range: 7 - 28
Published on: Aug 19, 2016
Published by: Polish Hyperbaric Medicine and Technology Society
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Adam Olejnik, published by Polish Hyperbaric Medicine and Technology Society
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.