Have a personal or library account? Click to login

Precedence permutation patterns creating criticality constellations: Exploring a conjecture on nonlinear activities with continuous links

By:
Gunnar Lucko and  Yi Su  
Open Access
|Feb 2018

References

  1. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of ACM, 26(11), pp. 832-843.10.1145/182.358434
  2. Awwad, R. E., & Ioannou, P. G. (2007). Floats in RSM: Repetitive scheduling method. In: Proceedings of the Construction Research Congress, Grand Bahama Island, The Commonwealth of the Bahamas, May 6-8, 2007, American Society of Civil Engineers, Reston, VA, pp. 1133-1140.
  3. Bokor, O., & Hajdu, M. (2015). Investigation of critical activities in a network with point-to-point relations. Procedia Engineering, 123, pp. 198-207.10.1016/j.proeng.2015.10.078
  4. Crandall, K. C. (1973). Project planning with precedence lead/lag factors. Project Management Quarterly, 4(3), PMI-18-PMI-27.
  5. Fazar, W. (1962). The origin of PERT. The Controller, 1962(December), pp. 598-621.
  6. Fondahl, J. W. (1962). A Non-Computer Approach to the Critical Path Method for the Construction Industry, 2nd ed., November 1961, Revised 1962, Technical Report No. 9, Prepared under research contract NBy-17798, Bureau of Yards and Docks, U.S. Navy, Distributed by The Construction Institute, Stanford University, Stanford, CA, 133 pp.
  7. Francis, A. (2004). La modélisation chronographique de la planification des projets de construction. Dissertation, École de Technologie Supérieure, Montréal, QC, Canada, 331 pp.
  8. Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Kluwer Academic, Dordrecht, The Netherlands.10.1007/978-1-4757-5951-8
  9. Hajdu, M. (2015a). Continuous precedence relations for better modelling overlapping activities. Procedia Engineering, 123, pp. 216-223.10.1016/j.proeng.2015.10.080
  10. Hajdu, M. (2015b). History and some latest developments of precedence diagramming method. Organization, Technology and Management in Construction, 7(2), pp. 1302-1314.10.5592/otmcj.2015.2.5
  11. Hajdu, M. (2015c). One relation to rule them all: The point-to-point precedence relation that substitutes the existing ones. In: Proceedings of the CSCE International Construction Specialty Conference, Vancouver, BC, Canada, June 8-10, 2015, Canadian Society for Civil Engineering, Montréal, QC, Canada, pp. 827-837.
  12. Hajdu, M. (2016). How many types of critical activities exist? A conjecture that needs a proof. In: Presentation, Creative Construction Conference, Budapest, Hungary, June 25-28, 2016, Diamond Congress, Budapest, Hungary.
  13. Hajdu, M., Lucko, G., & Su, Y. (2017). Singularity functions for continuous precedence relations and nonlinear activity-time-production functions. Automation in Construction, 79(July), pp. 31-38.10.1016/j.autcon.2017.01.012
  14. Hajdu, M., Skibniewski, M. J., Vanhoucke, M., Horvath, A., & Brilakis, I. (2016). How many types of critical activities exist? A conjecture that needs a proof.” Procedia Engineering, 164, pp. 3-11.10.1016/j.proeng.2016.11.585
  15. Harmelink, D. J. (2001). Linear scheduling model: Float characteristics. Journal of Construction Engineering and Management, 127(4), pp. 255-260.10.1061/(ASCE)0733-9364(2001)127:4(255)
  16. Harris, R. B. (1978). Precedence and Arrow Networking Techniques for Construction. John Wiley and Sons, New York City, NY.
  17. IBM. (1964). User’s Manual for IBM 1440 Project Control System (PCS). International Business Machines, Armonk, NY.
  18. Kallantzis, A., & Lambropoulos, S. (2004). Critical path determination by incorporation minimum and maximum time and distance constraints into linear scheduling. Engineering, Construction and Architectural Management, 11(3), pp. 211-222.10.1108/09699980410535813
  19. Kelley, J. W., & Walker, M. R. (1959). Critical path planning and scheduling. In: Proceedings of the Eastern Joint Computer Conference, Boston, MA, December 1-3, 1959, National Joint Computer Committee, Association for Computing Machinery, New York City, NY, 16, pp. 160-173.10.1145/1460299.1460318
  20. Kelley, J. W., & Walker, M. R. (1989). The origins of CPM: A personal history. pmNetwork, 3(2), pp. 7-22.
  21. Kim, S.-Y. (2012). CPM schedule summarizing function of the beeline diagramming method. Journal of Asian Architecture and Building Engineering, 11(2), pp. 367-374.10.3130/jaabe.11.367
  22. Lucko, G. (2008). Analysis of linear schedules with singularity functions versus critical path method. In: Presented at PMI College of Scheduling Annual Conference, Chicago, IL, May 4-7, 2008, Project Management Institute, Newtown Square, PA, 12 pp.10.1109/WSC.2008.4736361
  23. Lucko, G. (2009). Productivity scheduling method: Linear schedule analysis with singularity functions. Journal of Construction Engineering and Management, 135(4), pp. 246-253.10.1061/(ASCE)0733-9364(2009)135:4(246)
  24. Lucko, G., & Gattei, G. (2016). Line-of-balance against linear scheduling: Critical comparison. Proceedings of the Institution of Civil Engineers - Management, Procurement and Law, 169(1), pp. 26-44.10.1680/jmapl.15.00016
  25. Lucko, G., & Peña Orozco, A. A. (2009). Float types in linear schedule analysis with singularity functions. Journal of Construction Engineering and Management, 135(5), pp. 368-37710.1061/(ASCE)CO.1943-7862.0000007
  26. Mauchly, J. W. (1962). Critical-path scheduling. Chemical Engineering, April 16, pp. 139-154.
  27. Mubarak, S. A. (2015). Construction Project Scheduling and Control, 3rd edn. Pearson/Prentice-Hall, Upper Saddle River, NJ.
  28. Plotnick, F. L. (2006). RDM - relationship diagramming method. In: Transactions of the AACE Annual Meeting, Last Vegas, NV, June 19-22, 2006, Association for the Advancement of Cost Engineering International, Morgantown, WV, PS.08.1- PS.08.10.
  29. Ponce de Leon, G. (2008). Graphical planning method (A new network-based planning/scheduling paradigm). In: Presented at PMI College of Scheduling Annual Conference, Chicago, IL, May 4-7, 2008, Project Management Institute, Newtown Square, PA, 10 pp.
  30. Reis, J. S., & Lucko, G. (2016). Productivity scheduling method with maximum constraints. International Journal of Construction Management, 16(1), pp. 77-93.10.1080/15623599.2015.1130674
  31. Rösch, W. (1970). Roy-Typ und Fondahl-Typ: Ein Beitrag zur Frage der Tätigkeitsgraphen in Bauwesen. Dissertation, Technical University Carolo-Wilhelmina of Brunswick, Brunswick, Germany, 144 pp.
  32. Roy, G. B. (1959). Contribution de la théorie des graphes á l’étude de certains problémes linéaries. Comptes Rendus de Séance de l’Académie des Sciences, 248(April 27, 1959), pp. 2437-2439.
  33. Wiest, J. D. (1981). Precedence diagramming method: Some unusual characteristics and their implications for project managers. Journal of Operations Management, 1(3), pp. 121-130.10.1016/0272-6963(81)90015-2
DOI: https://doi.org/10.1515/otmcj-2016-0023 | Journal eISSN: 1847-6228 | Journal ISSN: 1847-5450
Language: English
Page range: 1674 - 1683
Submitted on: Aug 31, 2017
Accepted on: Nov 23, 2017
Published on: Feb 17, 2018
Published by: University of Zagreb
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2018 Gunnar Lucko, Yi Su, published by University of Zagreb
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.