Have a personal or library account? Click to login
Markov Analysis of Students’ Performance and Academic Progress in Higher Education Cover

Markov Analysis of Students’ Performance and Academic Progress in Higher Education

Open Access
|Jun 2017

References

  1. Adam, R. Y. (2015). An Application of Markov Modeling to the Student Flow in Higher Education in Sudan. International Journal of Science and Research, 4(2), 49–54.
  2. Adeleke, R. A., Oguntuase, K. A. & Ogunsakin, R. E. (2014). Application Of Markov Chain To The Assessment Of Students ’ Admi ssion And Academic Performance In Ekiti State University. International Journal of Scientific & Technology Research, 3(7), 349–357.
  3. Al-Awadhi, S. A. & Ahmed, M. A. (2002). Logistic models and a Markovian analysis for student attrition. Kuwait Journal of Science and Engineering, 29(2), 25–40.
  4. Al-Awadhi, S. A. & Konsowa, M. (2007). An application of absorbing Markov analysis to the student flow in an academic institution. Kuwait Journal of Science & Engineering, 34(2A), 77–89.
  5. Al-Awadhi, S. & Konsowa, M. (2010). Markov Chain Analysis and Student Academic Progress: An Empirical Comparative Study. Journal of Modern Applied Statistical Methods, 9(2), 584–595.10.22237/jmasm/1288585500
  6. Arias Ortiz, E. & Dehon, C. (2013). Roads to Success in the Belgian French Community’s Higher Education System: Predictors of Dropout and Degree Completion at the Université Libre de Bruxelles. Research in Higher Education, 54(6), 693–723. http://doi.org/10.1007/s11162-013-9290-y10.1007/s11162-013-9290-y
  7. Aulck, L., Velagapudi, N., Blumenstock, J. & West, J. (2016). Predicting Student Dropout in Higher Education. Machine Learning; Computers and Society. Retrieved from http://arxiv.org/abs/1606.06364
  8. Auwalu, A., Mohammed, L. B. & Saliu, A. (2013). Application of Finite Markov Chain to a Model of Schooling. Journal of Education and Practice, 4(17), 1–10.
  9. Beichelt, F. (2006). Stochastic Processes in Science, Engineering and Finance. Boca Raton: Chapmna & Hall/CRC.10.1201/9781420010459
  10. Boath, E., Machin, R., Dixon, M., Thomas, N., Connell, P. O. & Taylor, L. (2016). Stop with the FLO : using text messaging to improve retention rates in University Students. Innovative Practice in Higher Education, 2(3), 29–39.
  11. Borgen, S. T. & Borgen, N. T. (2016). Student retention in higher education: Folk high schools and educational decisions. Higher Education, 71(4), 505–523. http://doi.org/10.1007/s10734-015-9921-710.1007/s10734-015-9921-7
  12. Brezavšček, A. & Baggia, A. (2015). Analysis of student’s flow in higher education study programmes using discrete homogeneous Markov chains. In L. Zadnik Stirn (Ed.), SOR ’15 proceedings, 13th International Symposium on Operational Research in Slovenia (pp. 473–478). Ljubljana: Slovenian Society Informatika, Section for Operational Research.
  13. Clarke, J. A., Nelson, K. J. & Stoodley, I. D. (2013). The place of higher education institutions in assessing student engagement, success and retention: a maturity model to guide practice. In Higher Education Research and Development Society of Australasia. AUT University, Auckland. Retrieved from http://eprints.qut.edu.au/60024/
  14. Clouder, L., Broughan, C., Jewell, S. & Steventon, G. (2012). Improving student engagement and development through assessment: Theory and practice in higher education. Routledge.
  15. Crippa, F., Mazzoleni, M. & Zenga, M. (2016). Departures from the formal of actual students’ university careers: an application of non-homogeneous fuzzy Markov chains. Journal of Applied Statistics, 43(1), 16–30. http://doi.org/10.1080/02664763.2015.109144610.1080/02664763.2015.1091446
  16. Hlavatý, R. & Dömeová, L. (2014). Students’ progress throughout examination process as a Markov chain. International Education Studies, 7(12), 20–29. http://doi.org/10.5539/ies.v7n12p2010.5539/ies.v7n12p20
  17. Hudoklin Božič, A. (2003). Stohastični procesi (6th ed.). Kranj: Moderna Organizacija.
  18. Mashat, A. F., Ragab, A. H. & Khedra, A. M. (2012). Decision Support System Based Markov Model for Performance Evaluation of Students Flow in FCIT-KAU. In roceedings of the ICCIT (pp. 409–414).
  19. Menéndez-Valdés, J. (2016). Current changes to the labour market may well define the future of Europe. Retrieved January 15, 2017, from https://www.eurofound.europa.eu/news/news-articles/labour-market-quality-of-life-social-policies/current-changes-to-the-labour-market-may-well-define-the-future-of-europe
  20. Moody, V. R. & DuClouy, K. K. (2014). Application of Markov Chains to Analyze and Predict the Mathematical Achievement Gap between African American and White American Students. Journal of Applied & Computational Mathematics, 3(161). http://doi.org/10.4172/2168-9679.100016110.4172/2168-9679.1000161
  21. Petty, T. (2014). Motivating first-generation students to academic success and college completion. College Student Journal, 48(2), 257–264.
  22. Rahim, R., Ibrahim, H., Kasim, M. M. & Adnan, F. A. (2013). Projection model of postgraduate student flow. Applied Mathematics and Information Sciences, 7(2 L), 383–387. http://doi.org/10.12785/amis/072L0110.12785/amis/072L01
  23. Rodríguez-Gómez, D., Meneses, J., Gairín, J., Feixas, M. & Muñoz, J. L. (2016). They have gone, and now what? Understanding re-enrolment patterns in the Catalan public higher education system. Higher Education Research & Development, 35(4), 815–828. http://doi.org/10.1080/07294360.2015.113788610.1080/07294360.2015.1137886
  24. Shah, C. & Burke, G. (1999). An undergraduate student flow model: Australian higher education. Higher Education, 37(4), 359–375.10.1023/A:1003765222250
  25. Symeonaki, M. & Kalamatianou, A. (2011). Markov Systems with Fuzzy States for Describing Students’ Educational Progress in Greek Universities. Isi, 1, 5956–5961. Retrieved from http://www.2011.isiproceedings.org/papers/950864.pdf
  26. Tijms, H. C. (2003). A First Course in Stochastic Models. Technometrics (Vol. 47). Chichester: John Wiley & Sons. http://doi.org/10.1198/tech.2005.s29310.1198/tech.2005.s293
  27. Watterson, C. A., Browne, W. N. & Carnegie, D. A. (2013). Steps to increase student engagement and retention in first year engineering. In Proceedings of 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE) (pp. 1–6). http://doi.org/10.1109/TALE.2013.665438810.1109/TALE.2013.6654388
  28. Wood, D., Gray-Ganter, G. & Bailey, R. (2016). Pre-commencement interviews to support transition and retention of first year undergraduate students. Student Success, 7(2), 21–31. Retrieved from https://student-successjournal.org/article/view/33810.5204/ssj.v7i2.338
DOI: https://doi.org/10.1515/orga-2017-0006 | Journal eISSN: 1581-1832 | Journal ISSN: 1318-5454
Language: English
Page range: 83 - 95
Submitted on: Dec 5, 2016
|
Accepted on: Mar 4, 2017
|
Published on: Jun 12, 2017
Published by: University of Maribor
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Alenka Brezavšček, Mirjana Pejić Bach, Alenka Baggia, published by University of Maribor
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.