References
- Le TDH, Ngan NVC, Bui TT, Nam NDG, Quan NH. The two decades of water quality changes in the Vietnamese Mekong Delta. In: Nguyen HQ, Apel H, Le QB, Nguyen MT, Sridhar V, editors. The Mekong River Basin. Amsterdam, Netherlands: Elsevier; 2024. pp. 311–54. 10.1016/B978-0-323-90814-6.00016-4.
- GSO. Mekong Delta—Promoting the Number One Rice Bowl Advantage in the Country 2021. Hanoi, Vietnam: General Statistics Office (GSO); 2021.
- Espagne E, Ngo-Duc T, Nguyen MH, Pannier EN, Woillez MN, Drogoul A, et al. Climate Change in Viet Nam, Impacts and Adaptation: A COP26 Assessment Report of the GEMMES Viet Nam Project. Paris, France: Agence Française de Développement; 2021.
- Anh DLT, Anh NT, Chandio AA. Climate change and its impacts on Vietnam agriculture: A macroeconomic perspective. Ecol Inf. 2023;74:101960. 10.1016/j.ecoinf.2022.101960.
- Smajgl A, Toan TQ, Nhan DK, Ward J, Trung NH, Tri LQ, et al. Responding to rising sea levels in the Mekong Delta. Nat Clim Change. 2015;5(2):167–74.
- Erban LE, Gorelick SM, Zebker HA. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta, Vietnam. Environ Res Lett. 2014;9(8):084010. 10.1088/1748-9326/9/8/084010.
- Minderhoud PS, Erkens G, Pham VH, Bui VT, Erban L, Kooi H, et al. Impacts of 25 years of groundwater extraction on subsidence in the Mekong Delta, Vietnam. Environ Res Lett. 2017;12(6):064006. 10.1088/1748-9326/aa7146.
- Dustgeer Z, Seleiman MF, Imran KHA, Chattha MU, Alhammad BA, Jalal RS, et al. Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Not Bot Horti Agrobot. 2021;49(1):12248. 10.15835/nbha49112248.
- Zhang T, Song B, Han G, Zhao H, Hu Q, Zhao Y, et al. Effects of coastal wetland reclamation on soil organic carbon, total nitrogen, and total phosphorus in China: A meta‐analysis. Land Degrad Dev. 2023;34(11):3340–9. 10.1002/ldr.4687.
- Khumairah FH, Setiawati MR, Fitriatin BN, Simarmata T, Alfaraj S, Ansari MJ, et al. Halotolerant plant growth-promoting rhizobacteria isolated from saline soil improve nitrogen fixation and alleviate salt stress in rice plants. Front Microbiol. 2022;13:9052. 10.3389/fmicb.2022.905210.
- Hmaeid N, Wali M, Mahmoud OMB, Pueyo JJ, Ghnaya T, Abdelly C. Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Appl Soil Ecol. 2019;133:104–13. 10.1016/j.apsoil.2018.09.011.
- Kapadia C, Sayyed RZ, El Enshasy HA, Vaidya H, Sharma D, Patel N, et al. Halotolerant microbial consortia for sustainable mitigation of salinity stress, growth promotion, and mineral uptake in tomato plants and soil nutrient enrichment. Sustainability. 2021;13(15):8369. 10.3390/su13158369.
- Gondek M, Weindorf DC, Thiel C, Kleinheinz G. Soluble salts in compost and their effects on soil and plants: a review. Compost Sci. 2020;28:59–75. 10.1080/1065657X.2020.1772906.
- Quan Z, Zhang X, Davidson EA, Zhu F, Li S, Zhao X, et al. Fates and use efficiency of nitrogen fertilizer in maize cropping systems and their responses to technologies and management practices: A global analysis on field 15N tracer studies. Earths Future. 2021;9(5):e2020EF001514. 10.1029/2020EF001514.
- Jiang S, Xiao B, Fan X, Li Y, Ma X, Wang J, et al. Roles of plants in controlling the response of soil bacterial community to climate warming on the Qinghai-Tibetan Plateau. Eur J Soil Biol. 2022;110:103401. 10.1016/j.ejsobi.2022.103401.
- Wang W, Shen C, Xu Q, Zafar S, Du B, Xing D. Grain yield, nitrogen use efficiency and antioxidant enzymes of rice under different fertilizer N inputs and planting density. Agronomy. 2022;12(2):430. 10.3390/agronomy12020430.
- Awan TH, St., Cruz PC, Farooq M, Chauhan BS. Influence of seeding rate, nitrogen rate and weed regimes on productivity and nitrogen efficiency of dry direct-seeded rice. Int J Plant Prod. 2022;16(1):163–80.
- Jiang Z, Zhong Y, Yang J, Wu Y, Li H, Zheng L. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Sci Total Environ. 2019;670:210–7. 10.1016/j.scitotenv.2019.03.188.
- Zhao C, Liu G, Chen Y, Jiang Y, Shi Y, Zhao L, et al. Excessive nitrogen application leads to lower rice yield and grain quality by inhibiting the grain filling of inferior grains. Agriculture. 2022;12(7):962. 10.3390/agriculture12070962.
- Chen Y, Liu Y, Zhang R, Zhang Y, Wei H. Improved physiological and morphological traits of root synergistically enhanced salinity tolerance in rice under appropriate nitrogen application rate. Front Plant Sci. 2022;13:982637. 10.3389/fpls.2022.982637.
- Ghadirnezhad Shiade SR, Fathi A, Kardoni F, Pandey R, Pessarakli M. Nitrogen contribution in plants: recent agronomic approaches to improve nitrogen use efficiency. J Plant Nutr. 2024;47(2):314–31. 10.1080/01904167.2023.2278656.
- Ali S, Moon YS, Hamayun M, Khan MA, Bibi K, Lee IJ. Pragmatic role of microbial plant biostimulants in abiotic stress relief in crop plants. J Plant Interact. 2022;17:705–18. 10.1080/17429145.2022.2091801.
- Duan HX, Luo CL, Zhu Y, Zhao L, Wang J, Wang W, et al. Arbuscular mycorrhizal fungus activates wheat physiology for higher reproductive allocation under drought stress in primitive and modern wheat. Eur J Agron. 2024;161:127376. 10.1016/j.eja.2024.127376.
- Abrar M, Zhu Y, Rehman MM, Batool A, Duan HX, Ashraf U, et al. Functionality of arbuscular mycorrhizal fungi varies across different growth stages of maize under drought conditions. Plant Physiol Biochemy. 2024;213:108839. 10.1016/j.plaphy.2024.108839.
- Yang YM, Naseer M, Zhu Y, Wang BZ, Zhu SG, Chen YL, et al. Iron nanostructure primes arbuscular mycorrhizal fungi symbiosis tightly connecting maize leaf photosynthesis via a nanofilm effect. ACS Nano. 2024;18(31):20324–39. 10.1021/acsnano.4c04145.
- Sheteiwy MS, Abd Elgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, et al. Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol Plant. 2021 Aug;172(4):2153–69. 10.1111/ppl.13454.
- Li MY, Wang W, Yin HH, Chen Y, Ashraf M, Tao HY, et al. The functional role of arbuscular mycorrhizal fungi in enhancing soil organic carbon stocks and stability in dryland. Soil Res. 2025;248:106443. 10.1016/j.still.2024.106443.
- Li MY, Wang W, Mo F, Ren AT, Wang ZY, Zhu Y, et al. Seven-year long-term inoculation with Funneliformis mosseae increases maize yield and soil carbon storage evidenced by in situ 13C-labeling in a dryland. Sci Total Environ. 2024;944:173975. 10.1016/j.scitotenv.2024.173975.
- Dat LT, Xuan LN, Nhan TC, Quang LT, Khuong NQ. Isolating, selecting, and identifying Na+, H+, Al3+, Fe2+, Mn2+-resistant purple non-sulfur bacteria solubilizing insoluble phosphorus compounds from salt-contaminated acid sulfate soil derived from rice-shrimp system. Aust J Crop Sci. 2024;18(4):192–9. 10.21475/ajcs.24.18.04.PNE-07.
- Dhar K, Venkateswarlu K, Megharaj M. Anoxygenic phototrophic purple non-sulfur bacteria: Tool for bioremediation of hazardous environmental pollutants. World J Microbiol Biotechnol. 2023;39(10):283. 10.1007/s11274-023-03729-7.
- Lee SK, Lur HS, Liu CT. From lab to farm: Elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms. 2021;9(12):2453. 10.3390/microorganisms9122453.
- Khuong NQ, Kantachote D, Dung NTT, Huu TN, Thuc LV, Thu LTM, et al. Potential of potent purple nonsulfur bacteria isolated from rice-shrimp systems to ameliorate rice (Oryza sativa L.) growth and yield in saline acid sulfate soil. J Plant Nutr. 2023;46(3):473–94. 10.1080/01904167.2022.2087089.
- Sakarika M, Spanoghe J, Sui Y, Wambacq E, Grunert O, Haesaert G, et al. Purple non‐sulphur bacteria and plant production: Benefits for fertilization, stress resistance, and the environment. Microb Biotechnol. 2020;13(5):1336–65. 10.1111/1751-7915.13474.
- Khuong NQ, Kantachote D, Nookongbut P, Onthong J, Thanh Xuan LNT, Sukhoom A. Mechanisms of acid-resistant Rhodopseudomonas palustris strains to ameliorate acidic stress and promote plant growth. Biocatal Agric Biotechnol. 2020;24:101520. 10.1016/j.bcab.2020.101520.
- Horneck DA, Sullivan DM, Owen JS, Hart JM. Soil test interpretation guide. OR: Oregon State University; 2011.
- Metson AL. Methods of chemical analysis for soil survey samples. Soil Sci. 1961;12:145–54.
- Landon JR. Booker soil tropical manual. Northants: Booker Agriculture International Limited; 1984.
- Marx ES, Hart JM, Stevens RG. Soil test interpretation guide. OR: Oregon State University; 1996, p. 1478–84.
- Chi TTN, Anh TTT, Paris T, Duy L, Loan DT, Lang NT. Farmers’ feedback on rice varieties tested under farmer-managed trials. Omonrice. 2015;20:93–108.
- Anh NH, Xuan LNT, Xuan DT, Quang LT, Khuong NQ. Nitrogen-fixing purple nonsulfur bacteria originating from acid saline soils of a rice-shrimp farm. Ind J Agric Res. 2024;7:14–28. 10.32734/injar.v7i1.14726.
- Khuong NQ, Huu TN, Nhan TC, Tran HN, Tien PD, Xuan LNT, et al. Two strains of Luteovulum sphaeroides (purple nonsulfur bacteria) promote rice cultivation in saline soils by increasing available phosphorus. Rhizosphere. 2021;20:100456. 10.1016/j.rhisph.2021.100456.
- Moran R. Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 1982;69(6):1376–81. 10.1104/pp.69.6.1376.
- Bates LS, Waldren RA, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973;39:205–7.
- IRRI. Standard evaluation system for rice. 4th edn. Manila, Philippines: IRRIl; 1996.
- Sparks DL, Page AL, Helmke PA, Loeppert RH, eds. Methods of soil analysis, Part 3: Chemical methods. Hoboken, New Jersey: John Wiley & Sons; 2020.
- Chang SC, Jackson JL. A fractionation of soil phosphorus. Soil Sci. 1957;84:133–44.
- Walinga I, Van Vark W, Houba V, Van der Lee J. Soil and plant analysis: Part 7-Plant analysis procedures. Netherlands: Wageningen: Agricultural University; 1989.
- Chowdhury S, Bolan N, Farrell M, Sarkar B, Sarker JR, Kirkham MB, et al. Role of cultural and nutrient management practices in carbon sequestration in agricultural soil. Adv Agron. 2021;166:131–96. 10.1016/bs.agron.2020.
- Wang X, Ding J, Han L, Tan J, Ge X, Nan Q. Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma. 2024;443:116845. 10.1016/j.geoderma.2024.116845.
- Sundar LS, Yen KS, Chang YT, Chao YY. Unraveling the novel synergistic effects of crop rotation and Rhodopseudomonas palustris inoculation on rice productivity and soil nutrient dynamics. Res Sq. 2023;1:1–37.
- Toor GS, Yang YY, Das S, Dorsey S, Felton G. Soil health in agricultural ecosystems: current status and future perspectives. Adv Agron. 2021;168:157–201. 10.1016/bs.agron.2021.02.004.
- Toppo M, Sinha AK, Shahi DK, Upadhay AK. Impact of nutrient management practices on exchangeable K, Ca, Mg, CEC and correlations with soil properties under maize-wheat cropping system. J Adv Biol Biotechnol. 2024;27(7):38–50. 10.9734/jabb/2024/v27i7964.
- Khuong NQ, Kantachote D, Onthong J, Xuan LNT, Sukhoom A. Enhancement of rice growth and yield in actual acid sulfate soils by potent acid-resistant Rhodopseudomonas palustris strains for producing safe rice. Plant Soil. 2018;429(1):483–501. 10.1007/s11104-018-3705-7.
- Irakoze W, Prodjinoto H, Nijimbere S, Bizimana JB, Bigirimana J, Rufyikiri G, et al. NaCl− and Na2SO4-induced salinity differentially affect clay soil chemical properties and yield components of two rice cultivars (Oryza sativa L.) in Burundi. Agronomy. 2021;11(3):571. 10.3390/agronomy11030571.
- Rodríguez Coca LI, García González MT, Gil Unday Z, Jiménez Hernández J, Rodríguez Jáuregui MM, Fernández Cancio Y. Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability. 2023;15(3):1804. 10.3390/su15031804.
- Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res. 2018;214:101–13. 10.1016/j.micres.2018.05.016.
- Nunkaew T, Kantachote D, Nitoda T, Kanzaki H, Ritchie RJ. Characterization of exopolymeric substances from selected Rhodopseudomonas palustris strains and their ability to adsorb sodium ions. Carbohydr Polym. 2015;115:334–41. 10.1016/j.carbpol.2014.08.099.
- Shi X, Xiao Y, Liu L, Xie Y, Ma R, Chen J. Transcriptome responses of the dinoflagellate Karenia mikimotoi driven by nitrogen deficiency. Harmful Algae. 2021;103:101977. 10.1016/j.hal.2021.101977.
- An G, Xing M, He B, Liao C, Huang X, Shang J, et al. Using machine learning for estimating rice chlorophyll content from in situ hyperspectral data. Remote Sens. 2020;12(18):3104. 10.3390/rs12183104.
- Yen KS, Sundar LS, Chao YY. Foliar application of Rhodopseudomonas palustris enhances the rice crop growth and yield under field conditions. Plants. 2022;11(19):2452. 10.3390/plants11192452.
- Mokrani S, Nabti EH. Microbes associated with crops: functional attributes for crop productivity. In: Yadav AN, editor. Soil microbiomes for sustainable agriculture: functional annotation. Cham: Springer; 2021. pp. 31–54. 10.1007/978-3-030-73507-4_2.
- Wang G, Zeng F, Song P, Sun B, Wang Q, Wang J. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. J Plant Physiol. 2022;272:153669. 10.1016/j.jplph.2022.153669.
- Salinas R, Sánchez E, Ruíz JM, Lao MT, Romero L. Proline, betaine, and choline responses to different phosphorus levels in green bean. Commun Soil Sci Plant Anal. 2013;44(1–4):465–72. 10.1080/00103624.2013.744146.
- Ábrahám C, Hourton-Cabassa C, Erdei L, Szabados L. Methods for determination of proline in plants. In: Shunkar R, editor. Plant Stress Tolerance. Methods in Molecular Biology. Totowa, New Jersey: Humana Press; 2010. pp. 317–31. 10.1007/978-1-60761-702-0_20.
- Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, et al. Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules. 2019;9(7):285. 10.3390/biom9070285.
- Koc YE, Aycan M, Mitsui T. Self-defense mechanism in rice to salinity: Proline. J-Multidiscip Sci. 2024;7(1):103–15. 10.3390/j7010006.
- Khuong NQ, Minh DPT, Thu LTM, Thuc LV. The potential of bacterial strains of Luteovulum sphaeroides W22 and W47 for producing δ-aminolevulinic acid to improve soil quality, growth and yield of saline-irrigated rice cultivated in salt-contaminated soil. Agronomy. 2023b;13(5):1409. 10.3390/agronomy13051409.
- Alkahtani J, Dwiningsih Y. Analysis of morphological, physiological, and biochemical traits of salt stress tolerance in Asian rice cultivars at seedling and early vegetative stages. Stresses. 2023;3(4):717–35. 10.3390/stresses3040049.
- Alam MK, Bell RW, Haque ME, Islam MA, Kader MA. Soil nitrogen storage and availability to crops are increased by conservation agriculture practices in rice-based cropping systems in the Eastern Gangetic Plains. Field Crop Res. 2020;250:107764. 10.1016/j.fcr.2020.107764.
- Javed SA, Jaffar MT, Shahzad SM, Ashraf M, Piracha MA, Mukhtar A, et al. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ Exper Bot. 2024;226:105836. 10.1016/j.envexpbot.2024.105836.
- Ijaz B, Sudiro C, Jabir R, Schiavo FL, Hyder MZ, Yasmin T. Adaptive behaviour of roots under salt stress correlates with morpho-physiological changes and salinity tolerance in rice. Int J Agric Biol. 2019;21(3):667–74. 10.17957/IJAB/15.0943.
- Sundar LS, Yen KS, Chang YT, Chao YY. Utilization of Rhodopseudomonas palustris in crop rotation practice boosts rice productivity and soil nutrient dynamics. Agriculture. 2024;14(5):758. 10.3390/agriculture14050758.
- Artyszak A, Gozdowski D. The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agronomy. 2020;10(9):1262. 10.3390/agronomy10091262.
- Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H. Biopower and biofertilizer production from organic municipal solid waste: an exergoenvironmental analysis. Renewable Energy. 2019;143:64–76. 10.1016/j.renene.2019.04.109.
- Sakpirom J, Nunkaew T, Khan E, Kantachote D. Optimization of carriers and packaging for effective biofertilizers to enhance Oryza sativa L. growth in paddy soil. Rhizosphere. 2021;19:100383. 10.1016/j.rhisph.2021.100383.
- Iwai R, Uchida S, Yamaguchi S, Sonoda F, Tsunoda K, Nagata H, et al. Effects of seed bio-priming by purple non-sulfur bacteria (PNSB) on the root development of rice. Microorganisms. 2022;10(11):2197. 10.3390/microorganisms10112197.
- Nazari AP, Sulichantini ED. Growth and yield of komak beans (Lablab purpureus (L.) Sweet) with application of photosynthetic bacteria PNSB under shade. Int J Plant Soil Sci. 2024;36(6):837–49. 10.9734/ijpss/2024/v36i64691.
- Zainuddin N, Keni MF, Ibrahim SA, Masri MM. Effect of integrated biofertilizers with chemical fertilizers on the oil palm growth and soil microbial diversity. Biocatal Agric Biotechnol. 2022;39:102237. 10.1016/j.bcab.2021.102237.