References
- Akpomie, T.M., Ekanem, E.O., Adamu, M.M. & Akpomie, J.O. (2016). Computer modelling of the concentration of heavy metals in artificial borings. World Journal of Analytical Chemistry 4(1): 6–10. DOI: 10.12691/wjac-4-1-2.
- Alizamir, M., Kim, S., Kisi, O. & Zounemat-Kermani, M. (2020). A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy 197: 11739. DOI: 10.1016/j.energy.2020.117239.
- Alte, P.D. & Sadgir, P.A. (2015). Water quality prediction by using ANN. International Journal of Advance Foundation And Research In Science & Engineering (IJAFRSE) 1: 278–285.
- Altunkaynak, A., Özger, M. & Çakmakcı, M. (2005). Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecological Modelling 189(3–4): 436–446. DOI: 10.1016/j.ecolmodel.2005.03.007.
- Aqil, M., Kita, I., Yano, A. & Nishiyama, S. (2007). A comparative study of artificial neural networks and neuro-fuzzy in continuous modelling of the daily and hourly behaviour of runoff. Journal of Hydrology 337(1–2): 22–34. DOI: 10.1016/j.jhydrol.2007.01.013.
- Areerachakul, S. (2012). Comparison of ANFIS and ANN for estimation of biochemical oxygen demand parameter in surface water. International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering 6(4): 168–172. DOI: scholar.waset. org/1999.6/3706.
- Arslan, G., Kale, S. & Sönmez, A.Y. (2020). Trend analysis and forecasting of streamflow of Gökırmak River (Turkey). Oceanological and Hydrobiological Studies 49(3): 230–246. DOI: 10.1515/ohs-2020-0021.
- Awan, J. A. & Bae, D.-H. (2016). Drought prediction over the East Asian monsoon region using the adaptive neuro-fuzzy inference system and the global sea surface temperature anomalies. International Journal of Climatology 36: 4767–4777. DOI: 10.1002/joc.4667.
- Ay, M. & Kisi, O. (2011). Modeling of dissolved oxygen concentration using different neural network techniques in Foundation Creek, El Paso County, Colorado. Journal of Environmental Engineering 138(6): 654–662. DOI: 1943-7870.0000511.10.1061/(ASCE)EE.
- Ay, M. & Kisi, O. (2014). Modelling of chemical oxygen demand by using ANNs, ANFIS and k-means clustering techniques. Journal of Hydrology 511: 279–289. DOI: 10.1016/j. jhydrol.2014.01.054.
- Azad, A., Farzin, S., Kashi, H., Sanikhani, H., Karami, H. et al. (2018). Prediction of river flow using hybrid neuro-fuzzy models. Arabian Journal of Geosciences 11: 718. DOI: 10.1007/s12517-018-4079-0.
- Bayatzadeh Fard, Z., Ghadimi, F. & Fattahi, H. (2017). Use of artificial intelligence techniques to predict distribution of heavy metals in groundwater of Lakan lead-zinc mine in Iran. Journal of Mining & Environment 8(1): 35–48. DOI: 10.22044/jme.2016.592.
- Brown, M. & Harris, C.J. (1994). Neuro-fuzzy adaptive modelling and control Prentice-Hall International, New York and London.
- Cakmakci, M. (2007). Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess and Biosystems Engineering 30: 349–357. DOI: 10.1007/s00449-007-0131-2.
- Cengiz, T. & Akbulak, C. (2009). Application of analytical hierarchy process and geographic information systems in land-use suitability evaluation: A case study of Dümrek village (Çanakkale, Turkey). International Journal of Sustainable Development & World Ecology 16(4): 286–294. DOI: 10.1080/13504500903106634.
- Collins, D.C., Reason, C.J.C. & Tangang, F. (2004). Predictability of Indian Ocean sea surface temperature using canonical correlation analysis. Climate Dynamics 22: 481–497. DOI: 10.1007/s00382-004-0390-4.
- Csábrági, A., Molnár, S., Tanos, P. & Kovács, J. (2017). Application of artificial neural networks to the forecasting of dissolved oxygen content in the Hungarian section of the river Danube. Ecological Engineering 100: 63–72. DOI: 10.1016/j. ecoleng.2016.12.027.
- Daneshmand, H., Tavousi, T., Khosravi, M. & Tavakoli, S. (2015). Modeling minimum temperature using adaptive neurofuzzy inference system based on spectral analysis of climate indices: A case study in Iran. Journal of the Saudi Society of Agricultural Sciences 14: 33–40. DOI: 10.1016/j. jssas.2013.06.001.
- Ejder, T., Kale, S., Acar, S., Hisar, O. & Mutlu, F. (2016). Effects of climate change on annual streamflow of Kocabaş Stream (Çanakkale, Turkey). Journal of Scientific Research and Reports 11(4): 1–11. DOI: 10.9734/JSRR/2016/28052.
- Ejder, T., Kale, S., Acar, S., Hisar, O. & Mutlu, F. (2016). Restricted effects of climate change on annual streamflow of Sarıçay stream (Çanakkale, Turkey). Marine Science and Technology Bulletin 5(1): 7–11.
- Elhatip, H. & Kömür, M.A. (2008). Evaluation of water quality parameters for the Mamasin dam in Aksaray City in the central Anatolian part of Turkey by means of artificial neural networks. Environmental Geology 53(6): 1157–1164. DOI: 10.1007/s00254-007-0705-y.
- Farokhnia, A., Morid, S. & Byun, H. (2011). Application of global SST and SLP data for drought forecasting on Tehran plain using data mining and ANFIS techniques. Theoretical and Applied Climatology 104(1–2), 71–81. DOI: 10.1007/s00704-010-0317-4.
- Garcia-Gorriz, E. & Garcia-Sanchez, J. (2007). Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks using satellite observations. Geophysical Research Letters 34: L11603. DOI: 10.1029/2007GL029888.
- Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M. et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics 16(2–3): 147–168. DOI: 10.1007/s003820050010.
- Graf, R., Zhu, S. & Sivakumar, B. (2019). Forecasting river water temperature time series using a wavelet–neural network hybrid modelling approach. Journal of Hydrology 578: 124115. DOI: 10.1016/j.jhydrol.2019.124115.
- He, Z.B., Wen, X.H., Liu, H. & Du, J. (2014). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology 509: 379–386. DOI: 10.1016/j.jhydrol.2013.11.054.
- Heddam, S. (2014). Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neurofuzzy inference systems (ANFIS): A comparative study. Environmental Monitoring and Assessment 186(1): 597–619. DOI: 10.1007/s10661-013-3402-1.
- Heddam, S., Ptak, M. & Zhu, S. (2020). Modelling of daily lake surface water temperature from air temperature: Extremely randomized trees (ERT) versus Air2Water, MARS, M5Tree, RF and MLPNN. Journal of Hydrology 588: 125130. DOI: 10.1016/j.jhydrol.2020.125130.
- Hisar, O., Sönmez, A.Y., Kaya, H. & Aras Hisar, Ş. (2012). Various inference systems for classification of water quality status: A case study. Marine Science and Technology Bulletin 1(1): 7–11.
- Icaga, Y. (2007). Fuzzy evaluation of water quality classification. Ecological Indicators 7(3): 710–718. DOI: 10.1016/j. ecolind.2006.08.002.
- Jang, J.S.R. (1993). ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transactions on Systems, Man, and Cybernetics 23(3): 665–685. DOI: 10.1109/21.256541.
- Jang, J.S.R., Sun, C.T. & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence Prentice-Hall, Upper Saddle River, New Jersey.
- Jarosz, E., Teague, W.J., Book, J.W. & Beşiktepe, Ş.T. (2012). Observations on the characteristics of the exchange flow in the Dardanelles Strait, Journal of Geophysical Research 117(C11): C11012. DOI: 10.1029/2012JC008348.
- Kale, S., Ejder, T., Hisar, O. & Mutlu, F. (2016). Climate change impacts on streamflow of Karamenderes River (Çanakkale, Turkey). Marine Science and Technology Bulletin 5(2): 1–6.
- Kale, S., Ejder, T., Hisar, O. & Mutlu, F. (2016). Effect of climate change on annual streamflow of Bakırçay River. Adıyaman Üniversitesi Fen Bilimleri Dergisi 6(2): 156–176.
- Kale, S. (2017a). Climatic trends in the temperature of Çanakkale city, Turkey. Natural and Engineering Sciences 2(3): 14–27. DOI: 10.28978/nesciences.348449.
- Kale, S. (2017b). Analysis of climatic trends in evaporation for Çanakkale (Turkey). Middle East Journal of Sciences 3(2): 69–82. DOI: 10.23884/mejs.2017.3.2.01.
- Kale, S. & Sönmez, A.Y. (2018a). Trend analysis of mean monthly, seasonally and annual streamflow of Daday Stream in Kastamonu, Turkey. Marine Science and Technology Bulletin 7(2): 60–67. DOI: 10.33714/masteb.418234.
- Kale, S. & Sönmez, A.Y. (2018b). Trend analysis of streamflow of Akkaya Stream (Turkey). Proceedings of the 1st International Conference on Food, Agriculture and Animal Sciences (pp. 33–45). Antalya, Turkey.
- Kale, S., Hisar, O., Sönmez, A.Y., Mutlu, F. & Filho, W.L. (2018). An assessment of the effects of climate change on annual streamflow in rivers in Western Turkey. International Journal of Global Warming 15(2): 190–211. DOI: 10.1504/IJGW.2018.092901.
- Kale, S. & Sönmez, A.Y. (2019a) Trend analysis for streamflow of Devrekani Stream (Turkey). Review of Hydrobiology 12(1–2): 23–37.
- Kale, S. & Sönmez, A.Y. (2019b). Trend analysis for annual streamflow of Ilgaz Stream (Turkey). Proceedings of the 2nd International Congress on Engineering and Life Science (pp. 628–633). Kastamonu, Turkey.
- Kale, S. & Sönmez, A.Y. (2019c). Trend analysis for annual streamflow of Araç Stream (Turkey). Proceedings of the 2nd International Congress on Engineering and Life Science (pp. 746–753) Kastamonu, Turkey.
- Khadr, M. & Elshemy, M. (2016). Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt. Ain Shams Engineering Journal 8(4): 1–9. DOI: 10.1016/j.asej.2016.08.004.
- Kisi, O. (2005) Suspended sediment estimation using neurofuzzy and neural network approaches. Hydrological Sciences Journal 50(4): 683–696. DOI: 10.1623/hysj.2005.50.4.683.
- Kisi, O., Dailr, A.H., Cimen, M. & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology 450–451: 48–58. DOI: 10.1016/j.jhydrol.2012.05.031.
- Kug, J.-S., Kang, I.-S., Lee, J.-Y. & Jhun, J.-G. (2004). A statistical approach to Indian Ocean sea surface temperature prediction using a dynamical ENSO prediction. Geophysical Research Letters 31(9): L09212. DOI: 10.1029/2003GL019209.
- Mahongo, S.B. & Deo, M.C. (2013). Using artificial neural networks to forecast monthly and seasonal sea surface temperature anomalies in the Western Indian Ocean. International Journal of Ocean and Climate Systems 4(2): 133–150. DOI: 10.1260/1759-3131.4.2.133.
- Mamdani, E.H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers 121(12): 1585–1588. DOI: 10.1049/piee.1974.0328.
- Nash, J.E. & Sutcliffe, J.V. (1970). River flow forecasting through conceptual models part I – A discussion of principles. Journal of Hydrology 10(3): 282–290. DOI: 10.1016/0022-1694(70)90255-6.
- Nayak, P.C., Sudheer, K.P., Rangan, D.M. & Ramasastrid, K.S. (2004). A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291: 52–66. DOI: 10.1016/j.jhydrol.2003.12.010.
- Neetu, Sharma, R., Basu, S., Sarkar, A. & Pal, P.K. (2011). Data-adaptive prediction of sea-surface temperature in the Arabian Sea. IEEE Geoscience and Remote Sensing Letters 8(1): 9–13. DOI: 10.1109/LGRS.2010.2050674.
- Nobre, P. & Shukla, J. (1996). Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. Journal of Climate 9(10): 2464–2479. DOI: 10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.
- Ocampo-Duque, W., Ferré-Huguet, N., Domingo, J.L. & Schuhmacher, M. (2006). Assessing water quality in rivers with fuzzy inference systems: A case study. Environment International 32(6): 733–742. DOI: 10.1016/j. envint.2006.03.009.
- Ouala, S., Herzet, C. & Fablet, R. (2018). Sea surface temperature prediction and reconstruction using patch-level neural network representations. Proceedings of IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium pp. 18205336. Valencia, Spain. DOI: 10.1109/IGARSS.2018.8519345.
- Patil, K., Deo, M.C. & Ravichandran, M. (2016). Prediction of sea surface temperature by combining numerical and neural techniques. Journal of Atmospheric and Oceanic Technology 33: 1715–1726. DOI: 10.1175/JTECH-D-15-0213.1.
- Piccolroaz, S. (2016). Prediction of lake surface temperature using the air2water model: Guidelines, challenges, and future perspectives. Advances in Oceanography and Limnology 7(1): 36–50. DOI: 10.4081/aiol.2016.5791.
- Piccolroaz, S., Calamita, E., Majone, B., Gallice, A., Siviglia, A. et al. (2016). Prediction of river water temperature: a comparison between a new family of hybrid models and statistical approaches. Hydrological Processes 30(21): 3901–3917. DOI: 10.1002/hyp.10913.
- Piccolroaz, S., Toffolon, M. & Majone, B. (2013). A simple lumped model to convert air temperature into surface water temperature in lakes. Hydrology and Earth System Sciences 17(8): 3323–3338. DOI: 10.5194/hess-17-3323-2013.
- Piotrowski, A.P., Napiorkowski, J.J. & Piotrowska, A.E. (2020) Impact of deep learning-based dropout on shallow neural networks applied to stream temperature modelling. Earth-Science Reviews 201: 103076. DOI: 10.1016/j. earscirev.2019.103076.
- Piotrowski, A.P., Napiorkowski, M.J., Napiorkowski, J.J. & Osuch, M. (2015). Comparing various artificial neural network types for water temperature prediction in rivers. Journal of Hydrology 529: 302–315. DOI: 10.1016/j. jhydrol.2015.07.044.
- Qasaimeh, A., Abdallah, M. & Bani Hani, F. (2012). Adaptive neuro-fuzzy logic system for heavy metal sorption in aquatic environments. Journal of Water Resource and Protection 04(05): 277–284. DOI: 10.4236/jwarp.2012.45030.
- Ranković, V., Radulović, J., Radojević, I., Ostojić, A. & Čomić, L. (2012). Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system. Journal of Hydroinformatics 14(1): 167–179. DOI: 10.2166/hydro.2011.084.
- Samadianfard, S., Kazemi, H., Kisi, O. & Liu, W.-C. (2016). Water temperature prediction in a subtropical subalpine lake using soft computing techniques. Earth Sciences Research Journal 20(2): D1–D11. DOI: 10.15446/esrj.v20n2.43199.
- Sengorur, B., Dogan, E., Koklu, R. & Samandar, A. (2006) Dissolved oxygen estimation using artificial neural network for water quality control. Fresenius Environmental Bulletin 15(9): 1064–1067.
- Shaltout, M. (2019). Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 61: 484–504. DOI: 10.1016/j.oceano.2019.05.002.
- Singh, K.P., Basant, A., Malik, A. & Jain, G. (2009). Artificial neural network modeling of the river water quality – A case study. Ecological Modelling 220(6): 888–895. DOI: 10.1016/j.ecolmodel.2009.01.004.
- Sönmez, A.Y. & Kale, S. (2020). Climate change effects on annual streamflow of Filyos River (Turkey). Journal of Water and Climate Change 11(2): 420–433. DOI: 10.2166/wcc.2018.060.
- Sönmez, A.Y., Hasiloglu, S., Hisar, O., Aras Mehan, H.N. & Kaya, H. (2013a). Fuzzy logic evaluation of water quality classification for heavy metal pollution in Karasu Stream, Turkey. Ekoloji 22(87): 43–50. DOI: 10.5053/ekoloji.2013.876.
- Sönmez, A.Y., Hisar, O. & Yanık, T. (2012). Determination of heavy metal pollution in Karasu River and classification of water quality. Journal of Agricultural Faculty of Atatürk University 43(1): 69–77.
- Sönmez, A.Y., Hisar, O. & Yanık, T. (2013b). A comparative analysis of water quality assessment methods for heavy metal pollution in Karasu Stream, Turkey. Fresenius Environmental Bulletin 22(2a): 579–583.
- Sönmez, A.Y., Kale, S., Özdemir, R.C. & Kadak, A.E. (2018). An adaptive neuro-fuzzy inference system (ANFIS) to predict of cadmium (Cd) concentrations in the Filyos River, Turkey. Turkish Journal of Fisheries and Aquatic Sciences 18(12): 1333–1343. DOI: 10.4194/1303-2712-v18_12_01.
- Soyupak, S., Karaer, F., Gürbüz, H., Kivrak, E., Sentürk, E. et al. (2003). A neural network-based approach for calculating dissolved oxygen profiles in reservoirs. Neural Computing & Applications 12(3–4): 166–172. DOI: 10.1007/s00521-003-0378-8.
- Takagi, T. & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15(1): 116–132. DOI: 10.1109/TSMC.1985.6313399.
- Talei, A., Chua, L.H.C., Quek, C. & Jansson, P.E. (2013). Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. Journal of Hydrology 488: 17–32. DOI: 10.1016/j.jhydrol.2013.02.022.
- Terzi, Ö., Keskin, M.E. and Taylan, E.D. (2006). Estimating evaporation using ANFIS. Journal of Irrigation and Drainage Engineering 132(5): 503–207. DOI: 10.1061/(ASCE)0733-9437(2006)132:5(503).
- Toffolon, M., Piccolroaz, S., Majone, B., Soja, A.M., Peeters, F. et al. (2014). Prediction of surface temperature in lakes with different morphology using air temperature. Limnology and Oceanography 59(6): 2185–2202. DOI: 10.4319/lo.2014.59.6.2185.
- Wang, W.-C., Chau, K.-W., Cheng, C.-T. & Qiu, L. (2009). A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology 374(3–4): 294–306. DOI: 10.1016/j. jhydrol.2009.06.019.
- Wei, L., Guan, L. & Qu, L. (2019). Prediction of sea surface temperature in the South China Sea by artificial neural networks. IEEE Geoscience and Remote Sensing Letters 17(4): 558–562. DOI: 10.1109/LGRS.2019.2926992.
- Wei, M., Bai, B., Sung, A.H., Liu, Q., Wang, J. et al. (2007). Predicting injection profiles using ANFIS. Information Sciences 177(20): 4445–4461. DOI: 10.1016/j.ins.2007.03.021.
- Xu, L., Li, Q., Yu, J., Wang, L., Xie, J. et al. (2020). Spatio-temporal predictions of SST time series in China’s offshore waters using a regional convolution long short-term memory (RC-LSTM) network. International Journal of Remote Sensing 41(9): 3368–3389. DOI: 10.1080/01431161.2019.1701724.
- Xue, Y. & Leetmaa, A. (2000). Forecasts of tropical Pacific SST and sea level using a Markov model. Geophysical Research Letters 27: 2701–2704. DOI: 10.1029/1999GL011107.
- Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8(3): 338–353. DOI: 10.1016/S0019-9958(65)90241-X.
- Zadeh, L.A. (1968). Fuzzy algorithms. Information and Control 12(2): 94–102. DOI: 10.1016/S0019-9958(68)90211-8.
- Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(1): 28–44. DOI: 10.1109/TSMC.1973.5408575.
- Zhang, Q., Wang, H., Dong, J., Zhong, G. & Sun, X. (2017). Prediction of sea surface temperature using long short-term memory. IEEE Geoscience and Remote Sensing Letters 14(10): 1745–1749. DOI: 10.1109/LGRS.2017.2733548.
- Zhao, Y., Nan, J., Cui, F.-Y. & Guo, L. (2007). Water quality forecast through application of BP neural network at Yuqiao Reservoir. Journal of Zhejiang University-SCIENCE A 8(9), 1482–1487. DOI: 10.1631/jzus.2007.A1482.
- Zhu, S. & Heddam, S. (2019). Modelling of maximum daily water temperature for streams: Optimally pruned extreme learning machine (OPELM) versus radial basis function neural networks (RBFNN). Environmental Processes 6: 789–804. DOI: 10.1007/s40710-019-00385-8.
- Zhu, S., Heddam, S., Nyarko, E.K., Hadzima-Nyarko, M., Piccolroaz, S. et al. (2019a). Modeling daily water temperature for rivers: Comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Environmental Science and Pollution Research 26(1): 402–420. DOI: 10.1007/s11356-018-3650-2.
- Zhu, S., Heddam, S., Wu, S. Dai, J. & Jia, B. (2019b). Extreme learning machine-based prediction of daily water temperature for rivers. Environmental Earth Sciences 78: 202. DOI: 10.1007/s12665-019-8202-7.
- Zhu, S., Nyarko, E.K., Hadzima-Nyarko, M., Heddam, S. & Wu, S. (2019c). Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ 7: e7065. DOI: 10.7717/peerj.7065.
- Zhu, S., Ptak, M., Yaseen, Z.M., Dai, J. & Sivakumar, B. (2020). Forecasting surface water temperature in lakes: a comparison of approaches. Journal of Hydrology 585: 124809. DOI: 10.1016/j.jhydrol.2020.124809.