Have a personal or library account? Click to login

Seafloor mapping based on multibeam echosounder bathymetry and backscatter data using Object-Based Image Analysis: a case study from the Rewal site, the Southern Baltic

Open Access
|Sep 2018

References

  1. Baatz, M. & Schäpe, A. (2000). Multiresolution segmentation – an optimization approach for high quality multi-scale image segmentation. In J. Stobl, T. Blashke & G. Griesebner (Eds.), Angewandte Geograpische InformationsVerarbeitung XII (pp. 12–23). Karlsruche: Wichmann Verlag.
  2. Benz, U., Hofman, P., Willhauck, G., Lingenfelder, I. & Heyen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Jorunal of Photogrammetry and Remote Sensing 58(3): 239–258. 10.1016/j.isprsjprs.2003.10.002.
  3. Blondel, P. (2009). The Handbook of Sidescan Sonar. Springer Praxis: Heidelberg.
  4. Breiman, L. (2001). Random Forests. Machine Learning 45(1): 5–32. 10.1023/A:1010933404324.
  5. Breiman, L., Friedman, J.H., Olshen, R.A. & Stone, C.J. (1984). Classification and Regression Trees. Belmont: Wadsworth.
  6. Brown, C.J., Todd, B.J., Kostylev, V.E. & Pickrill, R.A. (2011). Image-based classification of multibeam sonar backscatter data for objective surficial sediment mapping of Georges Bank, Canada. Continental Shelf Research 31(2): 110–119. 10.1016/j.csr.2010.02.009.
  7. Carlotto, M.J. (2009). Effect of errors in ground truth on classification accuracy. International Journal of Remote Sensing 30(18): 4831–4849. 10.1080/01431160802672864.
  8. Che Hasan, R., Ierodiaconou, D. & Laurenson, L. (2012a). Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuarine, Coastal and Shelf Science 97: 1–9. 10.1016/j.ecss.2011.10.004.
  9. Che Hasan, R., Ierodiaconou, D. & Monk, J. (2012b). Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar. Remote Sensing 4(11): 3427–3443. 10.3390/rs4113427.
  10. Cohen, J. (1960). A coefficient of agreement of nominal scales. Educational and Psychological Measurement 20(1): 37–46. 10.1177/001316446002000104.
  11. Congalton, R.G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment 37(1): 35–46. 10.1016/0034-4257(91)90048-B.
  12. Cortes, C. &Vapnik, V. (1995). Support-Vector Networks. Machine Learning 20: 273–297. 10.1023/A:1022627411411.
  13. Dartnell, P. & Gardner, J.V. (2004). Predicting seafloor facies from multibeam bathymetry and backscatter data. Photogrammetric Engineering and Remote Sensing 70: 1081–1091. 10.14358/PERS.70.9.1081.
  14. Diesing, M., Green, S.L., Stephens, D., Lark, R.M., Stewart, H.A. et al. (2014). Mapping seabed sediments: Comparison of manual, geostatical, object-based image analysis an machine learning approaches. Continental Shelf Research 84: 107–119. 10.1016/j.csr.2014.05.004.
  15. Diesing, M. (2016). Application of geobia to map the seafloor. In GEOBIA 2016: Solutions and Synergies, 1416 September 2016 (pp. 3). Enschede, Netherlands: ITC / University of Twente.
  16. Diesing, M., Mitchell, P. & Stephens, D. (2016). Image-based seabed classification: what can we learn from terrestrial remote sensing? ICES Journal of Marine Science. 73(10): 2425–2441. 10.1093/icesjms/fsw118.
  17. Drăguţ, L., Csillik, O., Eisank, C. & Tiede, D. (2014). Automated parametrisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing 88(100): 119–127. 10.1016/j.isprsjprs.2013.11.018.
  18. Drăguţ, L., Tiede, D. & Levick, S.R. (2010). ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science 24(6): 859–871. 10.1080/13658810903174803.
  19. Esri. (2016, February 5). Mosaic dataset properties. Retrieved June 27, 2017, from http://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/mosaic-dataset-properties.html
  20. Fonseca, L., Brown, C., Calder, B., Mayer, L. & Rzhanov, Y. (2009). Angular range analysis of acoustic themes from Stanton Banks Ireland: A link between visual interpretation and Multibeam angular signatures. Applied Acoustics 70(10): 1298–1304. 10.1016/j.apacoust.2008.09.008.
  21. Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment 80(1): 185–201. 10.1016/S0034-4257(01)00295-4.
  22. Gudelis, W.K. & Jemielianow, J.M. (1982). Geologia Morza Bałtyckiego. Warszawa: Wyd. Geologiczne. (In Polish).
  23. Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3(6): 610–621. 10.1109/TSMC.1973.4309314.
  24. Hay, G.J. & Castilla, G. (2006). Object-Based Image Analysis: Strengths, Weaknesses, Opportunities, and Threats (SWOT). In 1st International Conference on Object-based Image Analysis, 4–5 July 2006 (pp. 3). Salzburg, Austria: International Society for Photogrammetry and Remote Sensing.
  25. Huang, Z., Nichol, S.L., Siwabessy, J.P., Daniell, J. & Brooke, B.P. (2012). Predictive modelling of seabed parameters using mutibeam acoustic data: a case study on the Carnarvon Shelf, Western Australia. International Journal of Geographical Information Science 26: 283–307. 10.1080/13658816.2011.590139.
  26. Ierodiaconou, D., Monk, J., Rattray, A., Laurenson, L. & Versace, V.L. (2011). Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustic and video observations. Continental Shelf Research. 31: 28–38. 10.1016/j.csr.2010.01.012.
  27. Lamarche, G., Lurton, X., Verdier, A.L. & Augustin, J.M. (2011). Quantitative characterization of seafloor substrate and bedforms using advanced processing of multibeam backscatter. Application to the Cook Strait, New Zealand. Continental Shelf Research 31(2): 93–109. 10.1016/j.csr.2010.06.001.
  28. Lecours, V., Dolan, M.F.J., Micallef, A. & Lucieer, V.L. (2016). A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences. 20: 3207–3244. 10.5194/hess-20-3207-2016.
  29. Li, J., Tran, M. & Siwabessy, J. (2016). Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness. Plos ONE 11(2): 1–29. 10.1371/journal.pone.0149089.
  30. Li, D., Tang, C., Xia, C. & Zhang, H. (2017). Acoustic mapping and classification of benthic habitat using unsupervised learning in artificial reef water. Estuarine, Coastal and Shelf Science 185: 11–21. 10.1016/j.ecss.2016.12.001.
  31. Lucieer, V. (2008). Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. International Journal of Remote Sensing 29(3): 905–921. 10.1080/01431160701311309.
  32. Lucieer, V. & Lamarche, G. (2011). Unsupervised fuzzy classification and object-based image analysis of Multibeam data to map deep water substrates, Cook Strait, New Zealand. Continental Shelf Research 31: 1236–1247. 10.1016/j.csr.2011.04.016.
  33. Lucieer, V., Hill, N.A., Barrett, N.S. & Nichol, S. (2013). So marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle. Estuarine, Coastal and Shelf Science. 117: 94–106. 10.1016/j.ecss.2012.11.001.
  34. Lurton, X. & Lamarche, G. (2015, May). Backscatter measurements by seafloor-mapping sonarsGuidelines and Recommendations. Retrieved June 27, 2017, from http://geohab.org/publications/
  35. Madricardo, F., Foglini, F., Kruss, A., Ferrarin, C., Pizzeghello, N.M. et al. (2017). High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon. Scientific Data 4: 170121. 10.1038/sdata.2017.121.
  36. Mehryar, M., Rostamizadeh, A. & Talwalkar, A. (2012). Foundations of Machine Learning. Cambridge: The MIT Press.
  37. Micallef, A., Le Bas, T.P., Huvenne, V.A., Blondel, P., Hühnerbach, V. et al. (2012). A multi-method approach for benthic mapping of shallow coastal areas with high-resolution Multibeam data. Continental Shelf Research. 39–40: 14–26. 10.1016/j.csr.2012.03.008.
  38. Mojski, J.E. (1995). Atlas Geologiczny Południowego Bałtyku. Sopot-Warszawa: PIG. (In Polish).
  39. Montereale Gavazzi, G., Madricardo, F., Janowski, L., Kruss, A., Blondel, P. et al. (2016). Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats – Application to the Venice Lagoon, Italy. Estuarine, Coastal and Shelf Science 170: 45–60. 10.1016/j.ecss.2015.12.014.
  40. Montereale Gavazzi, G., Roche, M., Lurton, X., Degrendele, K., Terseleer, N. et al. (2017). Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea. Marine Geophysical Research 1–19. 10.1007/s11001-017-9323-6.
  41. Parnum, I.M. (2007). Benthic habitat mapping using multibeam sonar systems. Perth, Australia: Curtin University.
  42. Pieczka, F. (1980). Geomorfologia i Osady Denne Bałtyku Południowego. PerribalticumProblemy Badawcze Obszaru Bałtyckiego. Gdańsk: Ossolineum. (In Polish).
  43. QPS. (2015, March 31). QINSy 8.10.2015.03.31.1 Release Notes. Retrieved June 27, 2017, from https://confluence.qps.nl/display/dwn/QINSy+8.10.2015.03.31.1+Release+Notes
  44. Rattray, A., Ierodiaconou, D., Monk, J., Versace, V.L. & Laurenson, L.J.B. (2013). Detecting patterns of change in benthic habitats by acoustic remote sensing. Marine Ecology Progress Series 477: 1–13. 10.3354/meps10264.
  45. Sappington, J.M., Longshore, K.M. & Thomson, D.B. (2007). Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert. Journal of Wildlife Management 71(5): 1419–1426. 10.2193/2005-723.
  46. Stephens, D. & Diesing, M. (2014). A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-Size Data. Plos ONE 9(4): 1–14. 10.1371/journal.pone.0093950.
  47. Story, M. & Congalton, R.G. (1986). Accuracy assessment: A user’s perspective. Photogrammetric Engineering and Remote Sensing. 52: 397–399.
  48. Tęgowski, J. & Łubniewski, Z. (2002). Seabed characterisation using spectral moments of the echo signal. Acta Acustica / Acustica 88(5): 623–626.
  49. Wentworth, C.K. (1922). A Scale of Grade and Class terms for Clastic Sediments. The Journal of Geology 30(5): 377–392. 10.1086/622910.
  50. Wilson, M.F.J., O’Connell, B., Brown, C., Guinan, J.C & Grehan, A.J. (2007). Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Marine Geodesy 30: 3–35. 10.1080/01490410701295962.
  51. Wright, D. & Heyman, W. (2008). Introduction to the special issue: marine and coastal GIS for geomorphology, habitat mapping, and marine reserves. Marine Geodesy 31: 223–230. 10.1080/01490410802466306.
DOI: https://doi.org/10.1515/ohs-2018-0024 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 248 - 259
Submitted on: Oct 4, 2017
Accepted on: Jan 16, 2018
Published on: Sep 21, 2018
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Łukasz Janowski, Jarosław Tęgowski, Jarosław Nowak, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.