Have a personal or library account? Click to login
Seafloor mapping based on multibeam echosounder bathymetry and backscatter data using Object-Based Image Analysis: a case study from the Rewal site, the Southern Baltic
Baatz, M. & Schäpe, A. (2000). Multiresolution segmentation – an optimization approach for high quality multi-scale image segmentation. In J. Stobl, T. Blashke & G. Griesebner (Eds.), Angewandte Geograpische Informations – Verarbeitung XII (pp. 12–23). Karlsruche: Wichmann Verlag.
Benz, U., Hofman, P., Willhauck, G., Lingenfelder, I. & Heyen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. Jorunal of Photogrammetry and Remote Sensing 58(3): 239–258. 10.1016/j.isprsjprs.2003.10.002.
Brown, C.J., Todd, B.J., Kostylev, V.E. & Pickrill, R.A. (2011). Image-based classification of multibeam sonar backscatter data for objective surficial sediment mapping of Georges Bank, Canada. Continental Shelf Research 31(2): 110–119. 10.1016/j.csr.2010.02.009.
Carlotto, M.J. (2009). Effect of errors in ground truth on classification accuracy. International Journal of Remote Sensing 30(18): 4831–4849. 10.1080/01431160802672864.
Che Hasan, R., Ierodiaconou, D. & Laurenson, L. (2012a). Combining angular response classification and backscatter imagery segmentation for benthic biological habitat mapping. Estuarine, Coastal and Shelf Science 97: 1–9. 10.1016/j.ecss.2011.10.004.
Che Hasan, R., Ierodiaconou, D. & Monk, J. (2012b). Evaluation of Four Supervised Learning Methods for Benthic Habitat Mapping Using Backscatter from Multi-Beam Sonar. Remote Sensing 4(11): 3427–3443. 10.3390/rs4113427.
Congalton, R.G. (1991). A review of assessing the accuracy of classification of remotely sensed data. Remote Sensing of Environment 37(1): 35–46. 10.1016/0034-4257(91)90048-B.
Diesing, M. (2016). Application of geobia to map the seafloor. In GEOBIA 2016: Solutions and Synergies, 14–16 September 2016 (pp. 3). Enschede, Netherlands: ITC / University of Twente.
Diesing, M., Mitchell, P. & Stephens, D. (2016). Image-based seabed classification: what can we learn from terrestrial remote sensing? ICES Journal of Marine Science. 73(10): 2425–2441. 10.1093/icesjms/fsw118.
Drăguţ, L., Csillik, O., Eisank, C. & Tiede, D. (2014). Automated parametrisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing 88(100): 119–127. 10.1016/j.isprsjprs.2013.11.018.
Drăguţ, L., Tiede, D. & Levick, S.R. (2010). ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science 24(6): 859–871. 10.1080/13658810903174803.
Fonseca, L., Brown, C., Calder, B., Mayer, L. & Rzhanov, Y. (2009). Angular range analysis of acoustic themes from Stanton Banks Ireland: A link between visual interpretation and Multibeam angular signatures. Applied Acoustics 70(10): 1298–1304. 10.1016/j.apacoust.2008.09.008.
Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment 80(1): 185–201. 10.1016/S0034-4257(01)00295-4.
Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3(6): 610–621. 10.1109/TSMC.1973.4309314.
Hay, G.J. & Castilla, G. (2006). Object-Based Image Analysis: Strengths, Weaknesses, Opportunities, and Threats (SWOT). In 1st International Conference on Object-based Image Analysis, 4–5 July 2006 (pp. 3). Salzburg, Austria: International Society for Photogrammetry and Remote Sensing.
Huang, Z., Nichol, S.L., Siwabessy, J.P., Daniell, J. & Brooke, B.P. (2012). Predictive modelling of seabed parameters using mutibeam acoustic data: a case study on the Carnarvon Shelf, Western Australia. International Journal of Geographical Information Science 26: 283–307. 10.1080/13658816.2011.590139.
Ierodiaconou, D., Monk, J., Rattray, A., Laurenson, L. & Versace, V.L. (2011). Comparison of automated classification techniques for predicting benthic biological communities using hydroacoustic and video observations. Continental Shelf Research. 31: 28–38. 10.1016/j.csr.2010.01.012.
Lamarche, G., Lurton, X., Verdier, A.L. & Augustin, J.M. (2011). Quantitative characterization of seafloor substrate and bedforms using advanced processing of multibeam backscatter. Application to the Cook Strait, New Zealand. Continental Shelf Research 31(2): 93–109. 10.1016/j.csr.2010.06.001.
Lecours, V., Dolan, M.F.J., Micallef, A. & Lucieer, V.L. (2016). A review of marine geomorphometry, the quantitative study of the seafloor. Hydrology and Earth System Sciences. 20: 3207–3244. 10.5194/hess-20-3207-2016.
Li, J., Tran, M. & Siwabessy, J. (2016). Selecting Optimal Random Forest Predictive Models: A Case Study on Predicting the Spatial Distribution of Seabed Hardness. Plos ONE 11(2): 1–29. 10.1371/journal.pone.0149089.
Li, D., Tang, C., Xia, C. & Zhang, H. (2017). Acoustic mapping and classification of benthic habitat using unsupervised learning in artificial reef water. Estuarine, Coastal and Shelf Science 185: 11–21. 10.1016/j.ecss.2016.12.001.
Lucieer, V. (2008). Object-oriented classification of sidescan sonar data for mapping benthic marine habitats. International Journal of Remote Sensing 29(3): 905–921. 10.1080/01431160701311309.
Lucieer, V. & Lamarche, G. (2011). Unsupervised fuzzy classification and object-based image analysis of Multibeam data to map deep water substrates, Cook Strait, New Zealand. Continental Shelf Research 31: 1236–1247. 10.1016/j.csr.2011.04.016.
Lucieer, V., Hill, N.A., Barrett, N.S. & Nichol, S. (2013). So marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle. Estuarine, Coastal and Shelf Science. 117: 94–106. 10.1016/j.ecss.2012.11.001.
Lurton, X. & Lamarche, G. (2015, May). Backscatter measurements by seafloor-mapping sonars – Guidelines and Recommendations. Retrieved June 27, 2017, from http://geohab.org/publications/
Madricardo, F., Foglini, F., Kruss, A., Ferrarin, C., Pizzeghello, N.M. et al. (2017). High resolution multibeam and hydrodynamic datasets of tidal channels and inlets of the Venice Lagoon. Scientific Data 4: 170121. 10.1038/sdata.2017.121.
Micallef, A., Le Bas, T.P., Huvenne, V.A., Blondel, P., Hühnerbach, V. et al. (2012). A multi-method approach for benthic mapping of shallow coastal areas with high-resolution Multibeam data. Continental Shelf Research. 39–40: 14–26. 10.1016/j.csr.2012.03.008.
Montereale Gavazzi, G., Madricardo, F., Janowski, L., Kruss, A., Blondel, P. et al. (2016). Evaluation of seabed mapping methods for fine-scale classification of extremely shallow benthic habitats – Application to the Venice Lagoon, Italy. Estuarine, Coastal and Shelf Science 170: 45–60. 10.1016/j.ecss.2015.12.014.
Montereale Gavazzi, G., Roche, M., Lurton, X., Degrendele, K., Terseleer, N. et al. (2017). Seafloor change detection using multibeam echosounder backscatter: case study on the Belgian part of the North Sea. Marine Geophysical Research 1–19. 10.1007/s11001-017-9323-6.
Pieczka, F. (1980). Geomorfologia i Osady Denne Bałtyku Południowego. Perribalticum – Problemy Badawcze Obszaru Bałtyckiego. Gdańsk: Ossolineum. (In Polish).
Rattray, A., Ierodiaconou, D., Monk, J., Versace, V.L. & Laurenson, L.J.B. (2013). Detecting patterns of change in benthic habitats by acoustic remote sensing. Marine Ecology Progress Series 477: 1–13. 10.3354/meps10264.
Sappington, J.M., Longshore, K.M. & Thomson, D.B. (2007). Quantifying Landscape Ruggedness for Animal Habitat Analysis: A Case Study Using Bighorn Sheep in the Mojave Desert. Journal of Wildlife Management 71(5): 1419–1426. 10.2193/2005-723.
Stephens, D. & Diesing, M. (2014). A Comparison of Supervised Classification Methods for the Prediction of Substrate Type Using Multibeam Acoustic and Legacy Grain-Size Data. Plos ONE 9(4): 1–14. 10.1371/journal.pone.0093950.
Wright, D. & Heyman, W. (2008). Introduction to the special issue: marine and coastal GIS for geomorphology, habitat mapping, and marine reserves. Marine Geodesy 31: 223–230. 10.1080/01490410802466306.