Have a personal or library account? Click to login
Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland) Cover

Instability of spring environmental conditions as a driver of biotic interactions and crustacean structuring in meteorite crater ponds (Morasko, Poland)

Open Access
|Mar 2016

Figures & Tables

Figure 1

Location of the nature reserve “Meteorite Morasko” in Poland and location of the surveyed craters in the reserve (DP, MP and SP)
Location of the nature reserve “Meteorite Morasko” in Poland and location of the surveyed craters in the reserve (DP, MP and SP)

Figure 2

Mean values of copepod (blue bars) cladoceran (black bars) and species number (S), abundance (n; ind. l-1) and Shannon diversity index (H’) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error
Mean values of copepod (blue bars) cladoceran (black bars) and species number (S), abundance (n; ind. l-1) and Shannon diversity index (H’) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error

Figure 3

Mean number of large (nLargeClad) and small species (nSmallClad) of Cladocera (ind. l-1) in the studied months (A – April, M – May, J – June) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error
Mean number of large (nLargeClad) and small species (nSmallClad) of Cladocera (ind. l-1) in the studied months (A – April, M – May, J – June) in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different moths (A – April, M – May, J – June) with the standard error

Figure 4

The redundancy analysis diagram showing the relationships between species richness (S), Shannon diversity index (H’), abundance (n)
The redundancy analysis diagram showing the relationships between species richness (S), Shannon diversity index (H’), abundance (n)

Monte Carlo test for the significance of environmental factors in explaining the variation of biocenotic parameters of the crustacean community

FactorVariance explained (%)F
Chl a25.65.7

p<0.001

Cond18.63.9

p<0.01

O217.83.8

p<0.01

PO417.83.7

p<0.01

Temp17.53.7

p<0.01

SP16.23.4

p<0.01

MP15.83.3

p<0.01

Comp15.13.1

p<0.01

Mean values of physico-chemical parameters, abundance of competitors and predators, and morphometric parameters with the standard error and Kruskal-Wallis test (KW-H) in the studied meteorite crater ponds (DP – deep, MP – medium and SP – small) in different moths (A – April, M – May, J – June) (Temp – water temperature, O2 – oxygen concentration, pH – pH value, Cond – electric conductivity, Chl a – chlorphyll a concentration, NO3 – nitrate content, PO4 – phosphorus content, A_com – Aedes communis, Ostrac – Ostracoda, Chaob – Chaoborus crystallinus, Comp Tot – the total number of competitors, Carn Cope – carnivorous copepods’ abundance, Pred Tot – the total number of predators

DPMPSP
AMJKW-HAMJKW-HAMJKW-H
Abiotic parameters
Temp±C9±3.013±114±410.6

p<0.01

11±314±314±55.010±311±215±311.7

p<0.01

O2mg l−17.0±5.12.2±1.23.7±2.32.76.1±1.95.9±1.15.8±1.10.42.8±1.04.2±1.73.0±0.66.0

p<0.05

pH-7.9±0.67.6±0.47.3±0.212.6

p<0.01

7.6±0.17.4±0.37.4±0.70.16.4±0.36.9±0.47.0±0.017.3

p<0.01

CondμS cm-3144±20158±38201±1282.4541±53516±89334±8824.3

p<0.01

362±240695±221429±1219.0

p<0.01

Chl aμg l-184±5114±115±519.5

p<0.01

24±1310±96±515.1

p<0.01

24±1725±167±414.8

p<0.01

NO3mg l-10.21±0.010.17±0.10.00±0.0021.5

p<0.01

0.19±0.020.18±0.110.00±0.0020.5

p<0.01

0.73±0.510.34±0.210.00±0.0020.6

p<0.01

PO42.27±0.253.21±0.312.03±0.6324.3

p<0.01

0.2±0.080.24±0.150.53±0.621.33.05±0.862.91±0.621.36±1.4216.5

p<0.01

Biotic parameters
A.comind. l-11±22±27±84.92±22±32±31.483.±1304±34±47.4

p<0.05

Ostrac662±10141703±163127±6421.7

p<0.01

18±50354±5373±824.0

p<0.01

6±922±230.1±0.319.0

p<0.01

Chaob3±43±89±95.61±10.2±0.41±13.40.1±0.30±01±16.1

p<0.05

Comp Tot663±10141705±163034±6219.2

p<0.01

20±50357±5365±722.5

p<0.01

90±13226±244±414.8

p<0.01

Carn Cope3±40.1±0.30±013.9

p<0.01

5±60±00.1±0.318.5

p<0.01

1±11±30±08.9

p<0.05

Pred Tot8±78±1618±175.27±80.3±12±312.7

p<0.01

1±21±21±13.1
Morphometric parameters
Maximum crater diameterm402716
Maximum pond diameter 352520
Maximum pond depth 1.510.5

Mean values of cladoceran and copepod abundance with the list of dominant species in meteorite crater ponds (DP – deep, MP – medium, SP – shallow) in different months (A – April, M – May, J – June) with the standard error and Kruskal-Wallis test (KW-H) (Large Clad – large cladocerans, Small Clad – small cladocerans, Clad ♂ – cladoceran males, Cope Larvae – copepod larvae, Cope Adult – adult forms of copepods)

UnitDPMPSP
AMJKW-HAMJKW-HAMJKW-H
Large Cladind. l-110±1856±4329±2315.6

p<0.01

3±433±267±519.3

p<0.01

21±41139±12349.±5814.2

p<0.01

Small Clad0.2±0.52±29±1312.0

p<0.01

1±225±1722±1917.9

p<0.01

1±23±212±923.4

p<0.01

Clad0.3±18±100±011.6

p<0.01

1±14±51±117.2

p<0.01

8±1785±903±321.5

p<0.01

Cope Larvae361±24097±40241±2584.7200±147264±106286±904.1134±101307±324180±1202.9
Cope Adult12±1819±1610±93.410±115±55±40.85±411±101±114.8

p<0.01

Alonella excisa + ++
Bosmina longirostris +
Chydorus sphaericus +
Daphnia pulex++ ++ +++
Scapholeberis mucronata +
Simocephalus exspinosus+++
Cyclops vicinus+ +
Megacyclops viridis+++ + +
DOI: https://doi.org/10.1515/ohs-2016-0007 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 66 - 78
Submitted on: Apr 17, 2015
Accepted on: Sep 7, 2015
Published on: Mar 10, 2016
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Kasper Świdnicki, Anna M. Basińska, Natalia Kuczyńska-Kippen, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.