Have a personal or library account? Click to login
The increasing aluminum content affects the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechococcus sp. WH7803 Cover

The increasing aluminum content affects the growth, cellular chlorophyll a and oxidation stress of cyanobacteria Synechococcus sp. WH7803

Open Access
|Sep 2015

References

  1. Chung, C.C., Chang J., Gong G.C., Hsu S.C., Chiang K.P. et al. (2011). Effects of Asian dust storms on synechococcus population in the subtropical Kuroshio Current. Mar. Biotechnol. 13(4): 751-763. DIO: 10.1007/s10126-010-9336-5.
  2. Gehlen, M., Beck L. & Calas G. (2002). Unraveling the atomic structure of biogenic silica: evidence of the structural association of Al and Si in diatom frustules. Geochim. Cosmochim. Ac. 66: 1601-1609. DIO: http://dx.doi.org/10.1016/080394899427764.
  3. Gensemer, R.W. & Playle R.C. (1999). The bioavailabiligy and toxicity of aluminum in aquatic environments. Crit. Rev. Cl. Lab. Sci. 29(4): 315-450.
  4. Glover, H.E. (1985). The physiology and ecology of the marine cyanobacterial genus Synechococcus. Adv. Aquat. Microbiol. 3: 49-107.
  5. Golding, L.A., Angel B.M., Batley G.E., Apte S.C., Krassoi R. et al. (2014). Derivation of a water quality guideline for aluminium in marine waters. Environ. Toxicol. Chem. 34(1): 141-151. DOI: 10.1002/etc.2771.10.1002/etc.2771
  6. Hajiboland, R., Bahrami R.S., Barcelo J., Poschenrieder C. (2013). Mechanisms of aluminum-induced growth stimulation in tea (Camellia sinensis). J. Plant. Nutr. Soil. Sc. 176(4): 616-625. DOI: 10.1002/jpln.201200311.10.1002/jpln.201200311
  7. Han, Q., Moore J.K., Zender C., Measures C., Hydes D. ( 2008). Constraining oceanic dust deposition using surface ocean dissolved Al. Global. Biogeochem. Cy. 22(2): 14 pages. DOI: 10.1029/2007GB002975.10.1029/2007GB002975
  8. Herut, B., Zohary T. & Krom M.D. (2005). Response of East Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep. Sea. Res. Pt. II. 52: 3024-3040. DOI: 10.1016/j.dsr2.2005.09.003.10.1016/j.dsr2.2005.09.003
  9. Iturriaga, R. & Mitchell B.G. (1986). Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean. Mar. Ecol. Prog. Ser. 28: 291-297. DOI: 10.3354/ meps028291.
  10. Jickells, T.D. (1995). Atmospheric inputs of metals and nutrients to the oceans: their magnitude and effects, Mar. Chem. 48(3-4): 199-214. DOI: 10.1016/0304-4203(95)92784-P.10.1016/0304-4203(95)92784-P
  11. Kochian, L.V. (1995). Cellular mechanisms of Al toxicity and resistance in plants. Annu. Rev. Plant. Physiol. Plant. Mol. Boil. 46: 237-260. DOI: 10.1146/annurev.pp.46.060195.001321.10.1146/annurev.pp.46.060195.001321
  12. Kong, L.L. (2011). The preliminary study on the relationship of NO and the salt-stress physiology of Dunaliella salina. Unpublished Master dissertation, Shandong university, Jinan, Shandong, (In Chinese).
  13. Koning, E., Gehlen M. & Flank A.M. (2007). Rapid post-mortem incorporation of Al in diatom frustules: Evidence from chemical and structural analyses, Mari. Chem. 106: 208-222. DOI: 10.1016/j.marchem.2006.06.009.10.1016/j.marchem.2006.06.009
  14. Koshikawa, M.K., Sugiyama M. & Hori T. (2002). Seasonal variation of dissolved Al concentration in harmonic-type Lake Biwa, Japan. Limnology 3(1): 1-9. DOI: 10.1007/ s102010200000.
  15. Li, F.M., Ren J.L. & Yan L. (2013). The biogeochemical behavior of dissolved Al in the southern Yellow Sea: Influence of the spring phytoplankton bloom. Chin. Sci. Bull. 58(2): 238-248. DOI: 10.1007/s11434-012-5512-5.10.1007/s11434-012-5512-5
  16. Li, G. & Campbell D.A. (2013). Interacts with growth light and growth rate to alter photosystem II photoinactivation of the coastal Diatom Thalassiosira pseudonana. Plos one 8(1): e55562. 13 pages. DOI: 10.1371/journal.pone.0055562.10.1371/journal.pone.0055562356131723383226
  17. Li, G., Huang L.M., Liu H.X., Ke Z.X., Lin Q. et al. (2012). Latitudinal variability (6°S-20°N) of early summer phytoplankton species compositions and sizefractioned productivity from Java Sea to South China Sea. Mar. Biol. Res. 8(2): 163-171. DOI: org/10.1080/17451000.2011.61532 3.
  18. Measures, C.I., Brown M.T. & Vink S. (2005). Dust deposition to the surface waters of the western and central North Pacific inferred from surface water dissolved aluminum concentrations. Geochem. Geophy. Geosy. 6(9): Q09M03, 16 pages. DOI: 10.1029/2005GC000922.10.1029/2005GC000922
  19. Measures, C.I. & Edmond J.M. (1988). Aluminium as a tracer of the deep outflow from the Mediterranean. J. Geophys. Res- Oceans. 93(C1): 591-595. DOI: 10.1029/JC093iC01p00591.10.1029/JC093iC01p00591
  20. Millero, F.J., Woosley R., Ditrolio B., Waters J. (2009). Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22: 72-85.
  21. Minakawa, M. & Watanabe Y. (1998). Al in the East China Sea and Okinawa trough, marginal sea areas of the western north pacific. J. Oceanogr. 54(6): 629-640. DOI: 10.1007/ BF02823283.
  22. Moran, S.B. & Moore R.M. (1991) The potential source of dissolved aluminum from resuspended sediments to the North Atlantic Deep Water. Geochim. Cosmochim. Ac. 55(10): 2745-2751. DOI: 10.1016/0016-7037(91)90441-7.10.1016/0016-7037(91)90441-7
  23. Orians, K. & Bruland K. (1986). The biogeochemistry of aluminum in the Pacific Ocean. Earth. Planet. Sci. Lett. 78: 397-410. DOI: 10.1016/0012-821X(86)90006-3.10.1016/0012-821X(86)90006-3
  24. Pan, J.W., Zhu M.Y. & Chen H. (2001). Aluminum-induced cell death in root-tip cells of barley. Environ. Exp. Bot. 46(1): 71-79. DOI: 10.1016/S0098-8472(01)00083-1.10.1016/S0098-8472(01)00083-1
  25. Parsons, T.R., Maita Y. & Lalli C.M. (1984). A manual of chemical and biological methods for seawater analysis. Toronto: Pergamon Press.
  26. Qian, H., Pan X. & Shi S. (2011). Effect of nonylphenol on response of physiology and photosynthesis-related gene transcription of Chlorella vulgaris. Environ. Monit. Assess. 182(1-4): 61-69. DOI: 10.1007/s10661-010-1858-9.10.1007/s10661-010-1858-921207133
  27. Ren, J.L., Zhang G.L. & Zhang J. (2011). Distribution of dissolved aluminum in the Southern Yellow Sea: Influences of a dust storm and the spring bloom. Mar. Chem. 125(1-4): 69-81. DOI: 10.1016/j.marchem.2011.02.004.10.1016/j.marchem.2011.02.004
  28. Ren, J.F., Zhang J. & Luo J.Q. (2001). Improved fluorimetric determination of dissolved aluminum by micelle- enhanced lumogallion complex in natural waters, Analyst 126(5): 698-702. DOI: 10.1039/B007593K.10.1039/b007593k11394317
  29. Sacan, M.T., Oztay F. & Bolkent S. (2007). Exposure of Dunaliella tertiolecta to lead and aluminum: Toxicity and effects on ultrastructure. Biol. Trace. Elem. Res. 120(1-3): 264-272. DOI: 10.1007/s12011-007-8016-4.10.1007/s12011-007-8016-417916979
  30. Sharma, N.K., Tiwari S.P. & Tripathi K. (2011). Sustainability and cyanobacteria (blue-green algae): facts and challenges. J. Appl. Phycol. 23(6): 1059-1081. DOI: 10.1007/s10811-010-9626-3.10.1007/s10811-010-9626-3
  31. Stoffyn, M. (1979). Biological control of dissolved Al in seawater: experimental evidence. Science 203(4381): 651-653. DOI: 10.1126/science.203.4381.651.10.1126/science.203.4381.65117813377
  32. Vrieling, E.G.., Poort L. & Beelen T.P.M. (1999). Growth and silica content of the diatoms Thalassiosira weissflogii and Navicula salinarum at different salinities and enrichments with aluminium. Eur. J. Phycol. 34(3): 307-316. DOI: 10.1080/09670269910001736362.10.1080/09670269910001736362
  33. Wang, Q. & Tan Y.H. (2013). Distribution of dissolved aluminium and its affect to the phytoplankton community structure in the South China Sea. Unpublished Master dissertation, South China Sea Institute of Oceanology Chinese Academy of Sciences, Guangzhou, Guangdon, (In Chinese).
  34. Wang, Y., Wu J.Q. & Michael J. (1997). Conditions for the induction of long-term potentiation and long term depression by conjunctive pairing in the dentate gyms in vitro. J. Neurophysiol. 78(5): 2569-2573.
  35. Waterbury, J.B., Watson S.W., Valois F.W. (1986). Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. Can. Bull. Fish. Aquat. Sci. 214: 71-120.
  36. Xie, J., Bai X., Li Y., Sun C., Qian H. et al. (2014). The effect of glufosinate on nitrogen assimilation at the physiological, biochemical and molecular levels in Phaeodactylum tricornutum. Ecotoxicology 23(8): 1430-1438. DOI: 10.1007/ s10646-014-1285-8.
DOI: https://doi.org/10.1515/ohs-2015-0033 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 343 - 351
Submitted on: Feb 3, 2015
|
Accepted on: Apr 24, 2015
|
Published on: Sep 30, 2015
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Rongjun Shi, Gang Li, Linbin Zhou, Jiaxing Liu, Yehui Tan, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.