Have a personal or library account? Click to login
The effect of irradiance on the xanthophyll composition of Skeletonema marinoi (Bacillariophycae), Teleaulax sp., Rhodomonas sp. (Cryptophyceae), and Heterocapsa triquetra (Dinophyceae) Cover

The effect of irradiance on the xanthophyll composition of Skeletonema marinoi (Bacillariophycae), Teleaulax sp., Rhodomonas sp. (Cryptophyceae), and Heterocapsa triquetra (Dinophyceae)

By: Maria Łotocka  
Open Access
|Jun 2015

References

  1. Anning, T., MacIntyre H.L., Pratt S.M., Sammes P.J., Gibb S.& Geider R.J. (2000). Photoacclimation in the marine diatom Skeletonema costatum. Limnol. Oceanogr. 45(8): 1807-1817. DOI: 10.4319/lo.2000.45.8.1807.10.4319/lo.2000.45.8.1807
  2. Barlow, R.G., Aiken J., Holligan P.M., Cummings D.G., Maritorena S. & Hooker S. (2002). Phytoplankton pigment and absorption characteristics along meridional transects in the Atlantic Ocean. Deep-Sea Res.I 47: 637-660. DOI: 10.1016/S0967-0637(01)00081-4.10.1016/S0967-0637(01)00081-4
  3. Bertrand, M., Schoefs B., Siffel P., Rohacek K.& Molnar I. (2001). Cadmium inhibits epoxidation of diatoxanthin in the xanthophylls cycle of the marine diatom Phaeodactylum tricornutum. FEBS Letters 508(1): 153-156. DOI: 10.1016/ S0014-5793(01)03050-2.
  4. Bonilla, S., Rautio M. &Vincent W.F. (2009). Phytoplankton and phytobenthos pigment strategies: implications for algal survival in the changing Arctic. Polar Biol. 32(9): 1293-1303. DOI: 10.1007/s00300-009-0626-1.10.1007/s00300-009-0626-1
  5. Bungard, R.A., Ruban A.V., Hibberd J.M., Press M.C., Horton P.& Scholes J.D. (1999). Unusual carotenoid composition and new type of xanthophyll cycle in plants. Proc. Natl. Acad. Sci. USA, Plant Biology 96: 1135-1139. DOI: 10.1073/ pnas.96.3.1135.
  6. Cogdell, R.J., Howard T.D., Bittl R., Schlodder E., Geisenheimer I. & Lubitz W. (2000). How carotenoids protect bacterial photosynthesis. Phil. Trans. Soc. Lond. B 355(1402): 1345-1449. DOI: 10.1098/rstb.2000.0696.10.1098/rstb.2000.0696
  7. Demming-Adams, B. (1990). Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta 1020(1): 1-24. DOI: 10.1016/0005-2728(90)90088-L.10.1016/0005-2728(90)90088-L
  8. Demming-Adams, B. & Adams W.W. III (1993). The xanthophyll cycle. In: A. Young & G. Britton (Eds.), Carotenoids in Photosynthesis (pp. 206-251). London: Chapman & Hall.
  9. Demming-Adams, B., Adams W.W. III (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1(1): 21-26. DOI: 10.1016/S1360-1385(96) 80019-7.
  10. Demming-Adams, B., Adams W.W. III, Ebbert V. & Logan B.A. (1999). Ecophysiology and the xanthophyll cycle. In H.A Frank, A.J. Young, G. Britton, R.J. Cogdell (Eds.), Advances in Photosynthesis, The photochemistry of carotenoids. Vol. 8 (pp. 245-269). Dordrecht: Kluwer Academic Publishers.
  11. Demmig-Adams, B., Gilmore A.M. & Adams W.W. III (1996). Carotenoids 3: In vivo function of carotenoids in higher plants. FASEB J. 10(4): 403-412.
  12. Demming, B., Winter K., Krűger A. & Czygan F-C. (1987). Photoinhibition and zeaxanthin formation in intact leaves: a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol. 84(2): 218-224. DOI: org/ 10. 1104/ pp. 84. 2. 218.
  13. Frank, H. A. & Cogdell R.J. (1996). Carotenoids in photosythesis, Invited Review. Photochem. Photobiol. 63(3): 257-264. DOI: 10.1111/j.1751-1097.1996.tb03022.x.10.1111/j.1751-1097.1996.tb03022.x8881328
  14. Frank, H.A., Cua A., Chynwat V., Young A., Gosztola D. & Wasilewski M.R. (1994). Photophysics of the carotenoids associated with the xanthophyll cycle in photosynthesis. Photosynth. Res. 41(3): 389-395. DOI: 10.1007/BF02183041.10.1007/BF0218304124310153
  15. Funk, C., Alami M., Tibiletti T. & Green B.R. (2011). High light stress and the one-helix LHC-like proteins of the cryptophyte Guillardia theta. Biochim. Biophys. Acta 1807(7): 841-846. DOI: 10.1016/j.bbabio.2011.03.011.10.1016/j.bbabio.2011.03.01121459077
  16. Gilmore, A.M. & Yamamoto H.Y. (1993). Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin - independent quenching. Photosynth. Res. 35(1): 67-78. DOI: 10.1007/BF02185412.10.1007/BF0218541224318621
  17. Goericke, R. & Welschmeyer N.A. (1992). Pigment turnover in the marine diatom Thalassiosira weissflogii. II: The 14CO2 - labeling kinetics of carotenoids. J. Phycol. 28(4): 507-517. DOI: 10.1111/j.0022-3646.1992.00507.x.10.1111/j.0022-3646.1992.00507.x
  18. Goss, R., & Jakob T. (2010). Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106(1-2): 103-122. DOI: 10.1007/s11120-010-9536-x.10.1007/s11120-010-9536-x
  19. HELCOM (2001) Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects, Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki. [http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/enGB/annex6/].
  20. Henriksen, P., Riemann, B., Kaas, H., Sorensen, H. M., Sorensen, H. L. (2002). Effects of Nutrient-limitation and irradiance on marine phytoplankton pigments. J. Plankton Res. 24(9): 835-858. DOI: 10.1093/plankt/24.9.83510.1093/plankt/24.9.835
  21. Kaňa, R., Kotabová E., Sobotka R. & Prášil O. (2012). Nonphotochemical quenching in Cryptophyte alga Rhodomonas salina is located in chlorophyll a/c antennae. PLoS ONE 7(1): e29700. DOI: 10.1371/journal.pone.0029700.10.1371/journal.pone.0029700
  22. Latasa, M. (1995). Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Sci. Mar. 59(1): 25-37.
  23. Lohr, M. & Wilhelm C. (1999). Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc. Natl. Acad. Sci. USA, Plant Biology 96(15): 8784-8789. DOI: 10.1073/pnas.96.15.8784.10.1073/pnas.96.15.8784
  24. Mantoura, R.F.C. & Llewellyn C.A. (1983). The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reversephase high-performance liquid chromatography. Anal. Chim. Acta 151: 297-314. DOI: 10.1016/s0003-2670(00)80092-6.10.1016/S0003-2670(00)80092-6
  25. Menden-Deuer, S. & Lessard E.J. (2000). Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr. 45(1): 569-579. DOI: 10.4319/ lo.2000.45.3.0569.
  26. Mohanty, Y. N. & Yamamoto H.Y. (1995). Mechanism of nonphotochemical chlorophyll fluorescence quenching. I. The role of de-epoxidised xanthophylls and sequestered thylakoid membrane protons as probed by dibucaine. Aust. J. Plant Physiol. 22(2): 231-238. DOI:10.1071/PP9950231.10.1071/PP9950231
  27. Niyogi, K.K., Björkman O. & Grossman A.R. (1997): The roles of specific xanthophylls in photoprotection. Proc.10.1073/pnas.94.25.14162284509391170
  28. Natl. Acad. Sci. USA 94(25),:14162-14167. DOI: 10.1073/ pnas.94.25.14162
  29. Owens T.G. (1996). Processing of excitation energy by antenna pigments. In N.R. Baker (Eds.), Advances in Photosynthesis and Respiration Series. Photosynthesis and the Environment, Vol. 5 (pp.1-23). Dordrecht: Kluwer Academic Publishers. DOI: 10.1007/0-306-48135-9_1. 10.1007/0-306-48135-9_1
  30. Porra, R.J., Pfündel E.E. & Engel N. (1997). Metabolism and function of photosynthetic pigments. In: S.W Jeffrey., R.F.C.
  31. Mantoura & S.W. Wright (Eds). Phytoplankton pigments in oceanography (pp. 85-126). Paris: UNESCO Publishing.
  32. Pfűndel, E. & Bilger W. (1994). Regulation and possible function of the violaxanthin cycle. Photosynth. Res. 42(2): 89-109. DOI: 10.1007/BF02187121.10.1007/BF0218712124306498
  33. Roy, S., Llewellyn C.A., Egeland E.S. & Johnsen, G. (Eds) (2011). Phytoplankton pigments: characterization, chemotaxonomy and applications in oceanography. (890 pp.). New York: Cambridge Environmental Chemistry Series, Cambridge University Press.10.1017/CBO9780511732263
  34. Sarno, D., Kooistra W.H.C.F., Medlin L.K., Percopo I. & Zingone A. (2005). Diversity in the genus Skeletonema (Bacillariophyceae). II An assessment of the taxonomy of S. costatum-like species with the description of four new species. J. Phycol. 41(1): 151-176. DOI: 10.1111/j.1529-8817.2005.04067.x 10.1111/j.1529-8817.2005.04067.x
  35. Schlüter, L., Mohlenberg, F., Havskum, H. & Larsen, S. (2000). The use of phytoplankton pigments for identifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chlorophyll a ratios. Mar. Ecol. Prog. Ser. 192: 49-63. DOI:10.3354/meps19204910.3354/meps192049
  36. Skoda, B. (1997). Contributions to the biochemical taxonomy of the genus Chlorella Beijerinck s.1. - pigment composition. 2. Biochemotaxonomical differences in pigment composition of the strains growing under nitrogen deficient nutritional conditions. Arch. Hydrobiol. Suppl. (Algol. Stud.) 122: 109-136.
  37. Stoń, J. & Kosakowska A.(2000). Qualitative and quantitative analysis of Baltic phytoplankton pigments. Oceanologia 42(4): 449-471.
  38. Stoń, J. & Kosakowska A. (2002). Phytoplankton pigment designation - an application of RP-HPLC in qualitative and quantitative analysis. J. Appl. Phycol. 14(3): 205-210. DOI:10.1023/A:101992841143610.1023/A:1019928411436
  39. Stoń-Egiert, J., Majchrowski R., Darecki M., Kosakowska A. & Ostrowska M. (2012). Influence of underwater light fields on pigment characteristics in the Baltic Sea - results of statistical analysis. Oceanologia 54(1): 7-27. DOI: 10.5697/oc.54-1.007.10.5697/oc.54-1.007
  40. Straub, O., 1987. Key to carotenoids. H. Pfander, M. Gerspacher, M. Rychener & R. Schwabe (Eds), (296 pp.), Basel, Boston: Birkhäuser Verlag.
  41. Takaichi, S. (2011). Carotenoids in algae: distribution, biosyntheses and functions. Mar. Drugs 9(6): 1101-1118. DOI: 10.3390/md9061101.10.3390/md9061101313156221747749
  42. Utermöhl, H. (1958). Zur Vervollkommnung der qualitativen Phytoplankton Methodik. Mitt. int. Ver. theor. angew. Limnol. 9: 1-38.
  43. Yamamoto, H.Y. (1979). Biochemistry of the violaxanthin cycle in higher plants. Pure Appl. Chem. 51(3): 639-648. DOI: 10.1351/pac197951030639. 10.1351/pac197951030639
DOI: https://doi.org/10.1515/ohs-2015-0017 | Journal eISSN: 1897-3191 | Journal ISSN: 1730-413X
Language: English
Page range: 172 - 180
Submitted on: Oct 31, 2014
|
Accepted on: Jan 22, 2015
|
Published on: Jun 5, 2015
Published by: University of Gdańsk
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Maria Łotocka, published by University of Gdańsk
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.