Have a personal or library account? Click to login
On the role of LET-dependent parameters in the determination of the absorbed dose by in-phantom recombination chambers Cover

On the role of LET-dependent parameters in the determination of the absorbed dose by in-phantom recombination chambers

Open Access
|Mar 2018

References

  1. 1. Zielczyński, M. (1962). Use of columnar recombination for determination of relative biological effi ciency of radiation. Nukleonika, 7, 175-182 (in Russian).
  2. 2. Zielczyński, M. (1963). Recombination method for determination of linear energy transfer of mixed radiation. In Symposium on Neutron Detection, Dosimetry, and Standardization, 10-14 December 1962 (pp. 397-404). Vienna, Austria: International Atomic Energy Agency.
  3. 3. Sullivan, A. H., & Baarli, J. (1963). An ionization chamber for the estimation of the biological effectiveness of radiation. Geneva, Switzerland: CERN. (Report 63-17).
  4. 4. Zielczyński, M., Golnik, N., Makarewicz, M., & Sullivan, A. H. (1981). Defi nition of radiation quality by initial recombination of ions. In 7th Symposium on Microdosimetry, 8-12 September 1980 (pp. 853-862). Oxford, United Kingdom: Harwood Academic Publishers.
  5. 5. Zielczyński, M., & Golnik, N. (1994). Recombination index of radiation quality - measuring and applications. Radiat. Prot. Dosim., 52, 419-422.10.1093/oxfordjournals.rpd.a082226
  6. 6. Golnik, N. (1995). Microdosimetry using a recombination chamber: Method and applications. Radiat. Prot. Dosim., 61(1/3), 125-128.10.1093/oxfordjournals.rpd.a082766
  7. 7. Golnik, N. (1996). Recombination methods in the dosimetry of mixed radiation. Swierk, Poland: Institute of Atomic Energy. (Report IAE-20/A).
  8. 8. Zielczyński, M., & Golnik, N. (1994). Energy expended to create an ion pair as a factor dependent on radiation quality. In International Symposium on Measurement Assurance in Dosimetry, 24-27 May 1993 (pp. 383-391). Vienna, Austria: International Atomic Energy Agency.
  9. 9. Silari, M., Agosteo, S., Beck, P., Bedogni, R., Cale, E., Caresana, M., Domingo, C., Donadille, L., Dubourg, N., Esposito, A., Fehrenbacher, G., Fernandez, F., Ferrarini, M., Fiechter, A., Fuchs, A., Garcia, M.J., Golnik, N., Gutermuth, F., Khurana, S., Klages, Th., Latocha, M., Mares, V., Mayer, S., Radon, T., Reithmeier, H., Rollet, S., Roos, H., Ruhm, W., Sandri, S., Schardt, D., Simmer, G., Spurny, F., Trompier, F., Villa-Grasa, E., Weitzenegger, E., Wiegel, B., Wielunski, M., Wissmann, F., Zechner, A., & Zielczynski, M. (2009). Intercomparison of radiation protection devices in a high-energy stray neutron fi eld. Part III: Instrument response. Radiat. Meas., 44(7/8), 673-691. DOI: 10.1016/j.radmeas.2009.05.005.10.1016/j.radmeas.2009.05.005
  10. 10. Caresana, M., Denker, A., Esposito, A., Ferrarini, M., Golnik, N., Hohmann, E., Leuschner, A., Luszik-Bhadra, M., Manessi, G., Mayer, S., Ott, K., Roehrich, J., Silari, M., Trompier, F., Volnhals, M., & Wielunski, M. (2014). Intercomparison of radiation protection instrumentation in a pulsed neutron fi eld. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 737, 203-213. DOI: 10.1016/j.nima.2013.11.073.10.1016/j.nima.2013.11.073
  11. 11. Miljanic, S., Bordy, J. -M., d’Errico, F., Harrison, R., & Olko, P. (2014). Out-of-fi eld dose measurements in radiotherapy - An overview of activity of EURADOS Working Group 9: Radiation protection in medicine. Radiat. Meas., 71, 270-275. DOI: 10.1016/j.radmeas.2014.04.026.10.1016/j.radmeas.2014.04.026
  12. 12. Kaderka, R., Schardt, D., Durante, M., Berger, T., Ramm, U., Licher, J., & La Tessa, C. (2012). Outof- field dose measurements in a water phantom using different radiotherapy modalities. Phys. Med. Biol., 57(16), 5059-5074. DOI: 10.1088/0031- 9155/57/16/5059.10.1088/0031-9155/57/16/505922836598
  13. 13. Hälg, R. A., Besserer, J., Boschung, M., Mayer, S., Lomax, A. J., & Schneider, U. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment machines and delivery techniques in radiation therapy. Phys. Med. Biol., 59(10), 2457-2468. DOI: 10.1088/0031-9155/59/10/2457.10.1088/0031-9155/59/10/245724778349
  14. 14. Sanchez-Doblado, F., Domingo, C., Gomez, F., Sánchez-Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito, M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, N., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares, J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2012). Estimation of neutron-equivalent dose in organs of patients undergoing radiotherapy by the use of a novel online digital detector. Phys. Med. Biol., 57(19), 6167-6191. DOI: 10.1088/0031-9155/57/19/6167.10.1088/0031-9155/57/19/616722971664
  15. 15. Irazola, L., Lorenzoli, M., Bedogni, R., Pola, A., Terron, J. A., Sanchez-Nieto, B., Exposito, M. R., Lageras, J. I., Sansaloni, F., & Sanchez-Doblado, F. (2014). A new online detector for estimation of peripheral neutron equivalent dose in organ. Med. Phys., 41(11), art. no. 112105. DOI: 10.1118/1.4898591.10.1118/1.489859125370656
  16. 16. Haelg, R. A., Besserer, J., Boschung, M., Sánchez- Nieto, B., Muñiz, J. L., García-Fusté, M. J., Expósito, M. R., Barquero, R., Hartmann, G., Terrón, J. A., Pena, J., Méndez, R., Gutiérrez, F., Guerre, F. X., Roselló, J., Núñez, L., Brualla-González, L., Manchado, F., Lorente, A., Gallego, E., Capote, R., Planes, D., Lagares, J. I., González-Soto, X., Sansaloni, F., Colmenares, R., Amgarou, K., Morales, E., Bedogni, R., Cano, J. P., & Fernández, F. (2014). Measurements of the neutron dose equivalent for various radiation qualities, treatment. Phys. Med. Biol., 59(10), 2457-2468. DOI: 10.1088/0031-9155/59/10/2457.10.1088/0031-9155/59/10/2457
  17. 17. Di Fulvio, A., Domingo, C., De San Pedro, M., D’Agostino, E., Caresana, M., Tana, L., & d’Errico, F. (2013). Superheated emulsions and track etch detectors for photoneutron measurements. Radiat. Meas., 57, 19-28. DOI: 10.1016/j.radmeas.2013.11.004.10.1016/j.radmeas.2013.11.004
  18. 18. Konefal, A., Orlef, A., & Bieniasiewicz, M. (2016). Measurements of neutron radiation and induced radioactivity for the new medical linear accelerator, the Varian TrueBeam. Radiat. Meas., 86, 8-15. DOI: 10.1016/j.radmeas.2015.12.039.10.1016/j.radmeas.2015.12.039
  19. 19. Kowalik, A., Jackowiak, W., Malicki, J., Skórska, M., Adamczyk, M., Konstanty, E., Piotrowski, T., & Polaczek-Grelik, K. (2017). Measurements of doses from photon beam irradiation and scattered neutrons in an anthropomorphic phantom model of prostate cancer: a comparison between 3DCRT, IMRT and tomotherapy. Nukleonika, 62(1), 29-35. DOI: 10.1515/ nuka-2017-0005.10.1515/nuka-2017-0005
  20. 20. Romero-Exposito, M., Domingo, C., Sanchez-Doblado, F., Ortega-Gelabert, O., & Gallego, S. (2016). Experimental evaluation of neutron dose in radiotherapy patients: Which dose? Med. Phys., 43(1), 360-367. DOI: 10.1118/1.4938578.10.1118/1.493857826745929
  21. 21. Particle Therapy Co-Operative Group (July, 2017). Particle Therapy Centers. Retrieved August 08, 2017, from https://www.ptcog.ch/index.php/facilities-inoperation, https://www.ptcog.ch/index.php/facilitiesunder-construction.
  22. 22. IFJ Cyclotron Centre Bronowice. (2015). Cyclotron Centre Bronowice. Retrieved August 08, 2017, from https://ccb.ifj.edu.pl/en.home.html.
  23. 23. Brenner, D. J., & Hatt, E. J. (2008). Secondary neutrons in clinical proton radiotherapy: A charged issue. Radiother. Oncol., 86(2), 165-170. DOI: 10.1016/j.radonc.10.1016/j.radonc
  24. 24. Farah, J., Mares, V., Romero-Exposito, M., Trinkl, S., Domingo, C., Dufek, V., Klodowska, M., Kubancak, J., Knezevic, Z., Liszka, M., Majer, M., Miljanic, S., Ploc, O., Schinner, K., Stolarczyk, L., Trompier, F., Wielunski, M., Olko, P., & Harrison, R. M. (2015). Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med. Phys., 42(5), 2572-2584. DOI: 10.1118/1.4916667.10.1118/1.491666725979049
  25. 25. Schneider, U., & Haelg, R. (2015). The impact of neutrons in clinical proton therapy. Frontiers in Oncology, 5, art. no. 235. DOI: 10.3389/fonc.2015.00235.10.3389/fonc.2015.00235461710426557501
  26. 26. Kumada, H., Matsumura, A., Sakurai, H., Sakae, T., Yoshioka, M., Kobayashi, H., Matsumoto, H., Kiyanagi, Y., Shibata, T., & Nakashima, H. (2014). Project for the development of the linac based NCT facility in University of Tsukuba. Appl. Radiat. Isot., 88, 211-215. DOI: 10.1016/j.apradiso.2014.02.018.10.1016/j.apradiso.2014.02.01824637084
  27. 27. Takada, K., Kumada, H., Isobe, T., Terunuma, T., Kamizawa, S., Sakurai, H., Sakae, T., & Matsumura, A. (2015). Whole-body dose evaluation with an adaptive treatment planning system for boron neutron capture therapy. Radiat. Prot. Dosim., 167(4), 584-590. DOI: 10.1093/rpd/ncu357.10.1093/rpd/ncu35725520378
  28. 28. Durisi, E., Alikaniotis, K., Borla, O., Bragato, F., Costa, M., Giannini, G., Monti, V., Visca, L., Vivaldo, G., & Zanini, A. (2015). Design and simulation of an optimized e-linac based neutron source for BNCT research. Appl. Radiat. Isot., 106, 63-67. DOI: 10.1016/j.apradiso.2015.07.039.10.1016/j.apradiso.2015.07.03926315098
  29. 29. Miyatake, S. I., Kawabata, S., Hiramatsu, R., Kuroiwa, T., Suzuki, M., Kondo, N., & Ono, K. (2016). Boron neutron capture therapy for malignant brain tumors. Neurol. Med. Chir., 56(7), 361-371. DOI: 10.2176/nmc.ra.2015-0297.10.2176/nmc.ra.2015-0297494559427250576
  30. 30. Zielczyński, M., Komochkov, M. M., Sychev, B. S., & Cherevatenko, A. P. (1968). Measurements of the quality factor for high energy protons in the water phantom. Nukleonika, 13(2), 165-170.
  31. 31. Golnik, N., Cherevatenko, E. P., Serov, A. Y., Shvidkij, S. V., Sychev, B. S., & Zielczyński, M. (1997). Recombination index of radiation quality of medical high energy neutron beams. Radiat. Prot. Dosim., 70(1/4), 215-218.10.1093/oxfordjournals.rpd.a031947
  32. 32. Golnik, N., Zielczyński, M., Bulski, W., Tulik, P., & Pałko, T. (2007). Measurements of the neutron dose near a 15 MV medical linear accelerator. Radiat. Prot. Dosim., 126(1/4), 619-622. DOI: 10.1093/rpd/ncm125.10.1093/rpd/ncm12517513292
  33. 33. Golnik, N., Gryziński, M. A., Kowalska, M., Meronka, K., & Tulik, P. (2014). Characterization of radiation fi eld for irradiation of biological samples at nuclear reactor - comparison of twin detector and recombination methods. Radiat. Prot. Dosim., 161(1/4), 196-200. DOI: 10.1093/rpd/nct341.10.1093/rpd/nct34124366246
  34. 34. Spencer, L. V., & Attix, F. H. (1955). A theory of cavity ionization. Radiat. Res., 3(3), 239-254.10.2307/3570326
  35. 35. Nahum, A. E. (1978). Water/air mass stopping power ratios for megavoltage photon and electron beams. Phys. Med. Biol., 23, 24-38.10.1088/0031-9155/23/1/002416446
  36. 36. Spencer, L. V. (1971). Remarks on the theory of energy deposition in cavities. Acta Radiol. Ther. Phys. Biol., 10(1), 1-20.10.3109/028418671091297415549335
  37. 37. Zielczyński, M. (1988). Technique of determining dose in medical beams of high energy particles. Dubna, Russia: JINR. (JINR Commun. R16-88-531). (in Russian).
  38. 38. Golnik, N., & Zielczyński, M. (1997). Dosimetry of neutron beams with energy of hundreds of MeV. In International Conference Neutrons in Research and Industry, June 9, 1996 (pp. 254-263). Crete, Greece: International Society for Optics and Photonics SPIE.
  39. 39. Zielczyński, M., & Golnik, N. (1999). Dosimetry of TRIGA reactor fi elds using high pressure ionization chambers. Świerk, Poland: Institute of Atomic Energy. (Report IAE-61/A).
DOI: https://doi.org/10.1515/nuka-2018-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 9 - 15
Submitted on: Dec 14, 2016
Accepted on: Dec 15, 2017
Published on: Mar 1, 2018
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Natalia Golnik, Maciej G. Maciak, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.