Have a personal or library account? Click to login
Chemical reduction of nitrate by zerovalent iron nanoparticles adsorbed radiation-grafted copolymer matrix Cover

Chemical reduction of nitrate by zerovalent iron nanoparticles adsorbed radiation-grafted copolymer matrix

Open Access
|Feb 2018

References

  1. 1. World Health Organization. (1974). Safe Drinking Water Quality Act Public Law 93-523. U.S. Government Printing Office.
  2. 2. World Health Organization. (2004). Guidelines for drinking-water quality. Vol. 1. Recommendations. Geneva: WHO.
  3. 3. Majumdar, D., & Gupta, N. (2000). Nitrate pollution of groundwater and associated human health disorders. Indian J. Environ. Health, 42, 28–39.
  4. 4. Weerasooriya, S. V. R., & Dissanayake, C. B. (1992). Modelling the nitrosation kinetics in simulated natural environmental conditions. Toxicol. Environ. Chem., 36, 131–137.10.1080/02772249209357836
  5. 5. Guter, G. (1995). Nitrate removal from contaminated groundwater by anion exchange. In A. K. Sengupta (Ed.), Ion exchange technology: Advances in pollution control (pp. 61–113). Lancaster, PA: Technomic Publishing Co. Inc.
  6. 6. Mercado, A., Libhaber, M., & Soares, M. I. M. (1988). In situ biological groundwater denitrification: Concepts and preliminary field tests. Water Sci. Technol., 20, 197–209.10.2166/wst.1988.0099
  7. 7. Bhatnagar, A., & Sillanpaa, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J., 168(2), 493–504.10.1016/j.cej.2011.01.103
  8. 8. Schoeman, J. J., & Styen, A. (2003). Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination, 155, 15–26.10.1016/S0011-9164(03)00235-2
  9. 9. Meile, L. J., & Johnson, A. J. (1983). Waste generation reduction – nitrate FY State Report. Trends in analytical chemistry. USA.
  10. 10. Pintar, A., Bastista, J., & Levec, J. (2001). Catalytic denitrification: Direct and indirect removal of nitrates from potable water. Catal. Today, 66(2/4), 503–510.10.1016/S0920-5861(00)00622-2
  11. 11. Urbain, V., Benoit, R., & Manem, J. (1996). Membrane bioreactor: a new treatment tool. J. Am. Water Works Assoc., 88, 75–86.10.1002/j.1551-8833.1996.tb06557.x
  12. 12. Rhodes, F. H., & Carty, J. T. (1925). The corrosion of certain metals by carbon tetrachloride. Ind. Eng. Chem., 17(9), 909–911.10.1021/ie50189a012
  13. 13. Murfy, A. P. (1991). Chemical removal of nitrate from water. Nature, 350, 223–225.10.1038/350223a0
  14. 14. Young, G. K., Bungay, H. R., Brown, L. M., & Parson, W. A. (1964). Chemical reduction of nitrate in water. J. Water Pollut.Control Federation, 36, 395–398.
  15. 15. Siantar, D. P., & Schreier, C. G. (1995). Transformation of the pesticide 1,2-dibromo-3-chloropropane (DBCP) and nitrate by iron powder and by H2/Pd/Al2O3. In American Chemical Society National Meeting, Washington, DC, April 2–6, 1995. American Chemical Society.
  16. 16. Ratnayake, S., Schild, D., Maczka, E., Jartych, E., Luetzenkirchen, J., Kosmulski, M., Makehelwala, M., Weragoda, S. K., Bandara, A., Wijayawardana, R., Chandrajith, R., Indrarathne, S. P., & Weerasooriya, R. (2016). A novel radiation-induced grafting methodology to synthesize stable zerovalent iron naoparticles at ambient atmospheric conditions. Colloid Polym. Sci., 294(10), 1557–1569.10.1007/s00396-016-3894-7
  17. 17. Atkins, P. W. (1986). Physical chemistry. Oxford University Press.
  18. 18. Yang, G. C. C., & Lee, H. -L. (2005). Chemical reduction of nitrate by nano-sized iron: Kinetics and pathways. Water Res., 39, 884–894.10.1016/j.watres.2004.11.03015743635
  19. 19. Wang, W., Jin, Z., Li, T., Zhang, H., & Gao, S. (2006). Preparation of spherical iron nanoclusters in ethanolwater solution for nitrate removal. Chemosphere, 65, 1396–1404.10.1016/j.chemosphere.2006.03.075
  20. 20. Hwang, Y. K. (2011). Mechanism study of nitrate reduction by nano zero valent iron. J. Hazard. Mater., 185, 1513–1521.10.1016/j.jhazmat.2010.10.078
  21. 21. Choe, S., Chang, Y. -Y., Hwang, K. -Y., & Khim, J. (2000). Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere, 41, 1307–1311.10.1016/S0045-6535(99)00506-8
  22. 22. Rodriguez-Maroto, J. M., Garcia-Herruzo, F., Garcia-Rubio, A., Gomez-Lahoz, C., & Vereda-Alonso, C. (2009). Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74(6), 804–809.10.1016/j.chemosphere.2008.10.02019041116
  23. 23. Ahn, S. C., Oh, S. -Y., & Cha, D. K. (2008). Enhanced reduction of nitrate by zero-valent iron at elevated temperatures. J. Hazard. Mater., 156(1/3), 17–22.10.1016/j.jhazmat.2007.11.10418179870
  24. 24. Jiang, Z., Zhang, S., Pan, B., Wang, W., Wang, X., Lv, L., Zhang, W., & Zhang, Q. (2012). A fabrication strategy for nanosized zero valent iron (nZVI)-polymeric anion exchanger composites with tunable structure for nitrate reduction. J. Hazard. Mater., 233/234, 1–6.10.1016/j.jhazmat.2012.06.02522795842
  25. 25. Jiang, Z., Lv, L., Zhang, W., Du, Q., Pan, B., Yang, L., & Zhang, Q. (2011). Nitrate reduction using nanosized zero-valent iron supported by polystyrene resins: role of surface functional groups. Water Res., 45, 2191–2198.10.1016/j.watres.2011.01.00521316071
DOI: https://doi.org/10.1515/nuka-2017-0039 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 269 - 275
Submitted on: Apr 21, 2017
|
Accepted on: Dec 13, 2017
|
Published on: Feb 16, 2018
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2018 Sanduni Y. Ratnayake, Anoma K. Ratnayake, Dieter Schild, Edward Maczka, Elzbieta Jartych, Johannes Luetzenkirchen, Marek Kosmulski, Rohan Weerasooriya, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.