Have a personal or library account? Click to login
Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation Cover

Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

Open Access
|Jul 2017

References

  1. 1. Chmielewski, A. G., Licki, J., Pawelec, A., Tymiński, B., & Zimek, Z. (2004). Operational experience of the industrial plant for electron beam fl ue gas treatment. Radiat. Phys. Chem., 71(1/2), 441-444. DOI: 10.1016/j.radphyschem.2004.03.020.10.1016/j.radphyschem.2004.03.020
  2. 2. Sun, Y., Zwolińska, E., & Chmielewski, A. G. (2016). Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Crit. Rev. Environ. Sci. Technol., 46(2), 119-142. DOI: 10.1080/10643389.2015.1063334.10.1080/10643389.2015.1063334
  3. 3. Minachev, X. M., & Antoshin, G. V. (1973). Radiation- catalytic activity of oxygen. Proceedings of the Russian Academy of Sciences, 9, 52-60 (in Russian).
  4. 4. Hakoda, T., Matsumoto, K., Mizuno, A., Kojima, T., & Hirota, K. (2008). Catalytic oxidation of xylene in air using TiO2 under electron beam irradiation. Plasma Chem. Plasma Process., 28, 25-37. DOI: 10.1007/s11090-007-9114-y.10.1007/s11090-007-9114-y
  5. 5. Cubillos Sanabria, H. A. (2011). Heterogeneous photocatalytic oxidation of NOx under indoor conditions: experimental and simulation study. MSc thesis. Eindhoven University of Technology, Department of the Built Environment.
  6. 6. Yu, Q. L., Ballari, M. M., & Brouwers, H. J. H. (2010). Indoor air purifi cation using heterogeneous photocatalytic oxidation. Part II: Kinetic study. Appl. Catal. B-Environ., 99, 58-65. DOI: 10.1016/j.apcatb.2010.05.032.10.1016/j.apcatb.2010.05.032
  7. 7. Gladkyi, A. Yu., & Aristov, Yu. I. (1998). High radiation-chemical yield of separated electron-hole pairs in the radiolysis of dispersed magnesium oxides in presence of N2O or H2. High Energy Chemistry (Moscow), 32(3), 179-184 (in Russian).
  8. 8. Baranov, V. F. (1974). Electron radiation dosimetry. Moscow: Atomizdat (in Russian).
  9. 9. Licki, J., Chmielewski, A. G., Pawelec, A., Zimek, Z., & Witman, S. (2014). Electron beam treatment of exhaust gas with high NOx concentration. Phys. Scripta, 161, 014067(1-4). DOI: 10.1088/0031-8949/2014/T161/014067.10.1088/0031-8949/2014/T161/014067
  10. 10. Chmielewski, A. G., Sun, Y., Zimek, Z., Bułka, S., & Licki, J. (2002). Mechanism of NOx removal by electron beam process in the presence of scavengers. Radiat. Phys. Chem., 65, 397-403. http://dx.doi.org/10.1016/S0969-806X(02)00340-7.10.1016/S0969-806X(02)00340-7
DOI: https://doi.org/10.1515/nuka-2017-0034 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 235 - 240
Submitted on: Jun 15, 2016
|
Accepted on: Jan 12, 2017
|
Published on: Jul 22, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Henrietta Nichipor, Yongxia Sun, Andrzej G. Chmielewski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.