Have a personal or library account? Click to login
57Fe Mössbauer spectroscopy investigations of iron phase composition in fluidized beds from the ELCHO power plant in Chorzów, Poland Cover

57Fe Mössbauer spectroscopy investigations of iron phase composition in fluidized beds from the ELCHO power plant in Chorzów, Poland

Open Access
|Jun 2017

References

  1. 1. Stout, W., Daily, M., Nickeson, T., Svendsen, R., & Thompson, G. (1997). Agricultural uses of alkaline fluidized bed combustion ash: case studies. Fuel, 76, 767-769.10.1016/S0016-2361(97)00001-X
  2. 2. Armesto, L., Bahillo, A., Cabanillas, A., & Otero, J. (2002). Combustion behaviour of rice husk in bubbling fl uidized bed. Biomass Bioenerg., 23, 171-176.10.1016/S0961-9534(02)00046-6
  3. 3. Glinicki, M., & Zielinski, M. (2008). Air void system in concrete containing circulating fl uidized bed combustion fl y ash. Mater. Struct., 41, 681-687.10.1617/s11527-007-9273-6
  4. 4. Shon, Ch. S., Mukhopadhyay, A. K., Saylak, D., Zollinger, D. G., & Mejeoumow, G. C. (2010). Potential use of stockpiled circulating fl uidized bed combustion ashes in controlled low strength material (CLSM) mixture. Constr. Build. Mater., 24, 839-847.10.1016/j.conbuildmat.2009.10.022
  5. 5. Koukouzas, N., Hãmãlãinen, J. Papanikolaou, A., Tourunen, T., & Jãntii, T. (2007). Mineralogical and elemental composition of fl y ash from pilot scale fl uidized bed combustion of lignite, bituminous coal, wood chips and their blends. Fuel, 86, 2186-2193.10.1016/j.fuel.2007.03.036
  6. 6. Koukouzas, N., Ward, C. R., Papanikolaou, D., Li, Z., & Ketikidis, C. (2009). Quantitative evaluation of minerals in fl y ashes of biomass-coal mixture derived from circulating fl uidized bed combustion technology. J. Hazard. Mater., 169, 100-107.10.1016/j.jhazmat.2009.03.116
  7. 7. Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., & Burwell, S. (2003). Advanced ash management technologies for CFBC ash. Waste Manage., 23, 506-513.10.1016/S0956-053X(02)00117-4
  8. 8. Smith, K. R., Veranth, J. M., Lighty, J. S., & Aust, A. E. (1998). Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem. Res. Toxicol., 11, 1494-1500.10.1021/tx980142v9860493
  9. 9. Solmon, F., Chuang, P. Y., Meskhidze, N., & Chem, Y. (2009). Acidic processing of mineral dust iron by anthropogenic compounds over the north Pacifi c Ocean. J. Geophys. Res., 114, D02305.
  10. 10. Meskhidze, N., Chameides, W. L., Nenes, A., & Chen, G. (2003). Iron mobilization in mineral dust: Can anthropogenic SO2 emissions affect ocean productivity. Geophys. Res. Lett., 30(21), 2085(5pp.).10.1029/2003GL018035
  11. 11. Veranth, J. M., Smith, K. R., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mobilization of iron from coal fl y ash was dependent upon the particle size and source of coal: Analysis of rates and mechanisms. Chem. Res. Toxicol., 13, 382-389.10.1021/tx990188410813655
  12. 12. Veranth, J. M., Smith, K. R., Huggins, F., Hu, A. A., Lighty, J. S., & Aust, A. E. (2000). Mössbauer spectroscopy indicates that iron in an aluminosilicate glass phase is the source of the bioavailable iron from coal fl y ash. Chem. Res. Toxicol., 13, 161-164.10.1021/tx990213610725111
  13. 13. Szumiata, T., Brzózka, K., Górka, B., Gawroński, M., Gzik-Szumiata, M., Świetlik, R., & Trojanowska, M. (2014). Iron speciation in coal fl y ashes - chemical and Mössbauer analysis. Hyperfi ne Interact., 226(1), 483-487.10.1007/s10751-013-0950-2
  14. 14. Jonczy, I., & Stanek, J. (2013). Phase composition of metallurgical slag studied by Mössbauer spectroscopy. Nukleonika, 58(1), 127-131.
  15. 15. Roshan, L., & Sharma, S. D. (2003). Application of Mössbauer spectroscopy to study the effect of fl y-ash in agriculture soil. Indian J. Pure Appl. Phys., 41, 145-148.
  16. 16. Stevens, J. G., Khasanov, A. M., Miller, J. M., Pollak, H., & Li, Z. (2005). Mössbauer mineral handbook. Asheville, NC, USA: Mössbauer Effect Data Center, The University of North Carolina. Available from https://www.mtholyoke.edu/courses/mdyar/data/MineralHandbook.pdf.
  17. 17. Waanders, F. B., Vinken, E., Mans, A., & Mulaba-Bafubiandi, A. F. (2003). Iron minerals in coal, weathered coal and coal ashes - SEM and Mössbauer results. Hyperfi ne Interact., 148, 21-29.10.1023/B:HYPE.0000003760.89706.f6
  18. 18. Seung-Hyun, Cho, Jong-Ik, Yoo, Turley, A., Miller, C. A., Linak, W. P., Wendt, J., Huggins, F., & Gilmour, M. (2009). Relationships between composition and pulmonary toxicity of prototype particles from coal combustion and pyrolysis. Proceedings of the Combustion Institute, 32, 2717-2725.
  19. 19. Haihan, Ch., Laskin, A., Baltrusaitis, J., Gorski, Ch., Scherer, M., & Grassian, V. (2012). Coal fl y ash as a source of iron in atmospheric dust. Environmental Science Technologist, 46, 211-212.
  20. 20. Oliweira, M., Waanders, F., Silva, L., Jasper, A., Sampaio, C., McHabe, D., Hatch, R., & Hower, J. (2011). A multi analytical approach to understand chemistry of Fe-minerals in fees coal and ashes. Coal Combustion and Gasifi cation Products, 3, 51-62.10.4177/CCGP-D-11-00006.1
DOI: https://doi.org/10.1515/nuka-2017-0014 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 101 - 107
Submitted on: Jun 22, 2016
|
Accepted on: Jun 22, 2016
|
Published on: Jun 9, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Mariola Kądziołka-Gaweł, Danuta Smolka-Danielowska, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.