Have a personal or library account? Click to login
Precise determination of HPGe detector efficiency for gamma spectrometry measurements of environmental samples with variable geometry and density Cover

Precise determination of HPGe detector efficiency for gamma spectrometry measurements of environmental samples with variable geometry and density

Open Access
|Mar 2017

References

  1. 1. Debertin, K., & Helmer, R. G. (1988). Gamma and X-ray spectrometry with semiconductor detectors. Amsterdam: Elsevier Science Ltd.
  2. 2. Knoll, G. F. (2010). Radiation detection and measurement (4th ed.). New York: John Wiley & Sons.
  3. 3. Casas-Ruiz, M., Ligero, R. A., & Barbero, L. (2012). Estimation of annual effective dose due to natural and man-made radionuclides in the metropolitan area of the Bay of Cadiz (SW of Spain). Radiat. Prot. Dosim., 150(1), 60–70.10.1093/rpd/ncr360
  4. 4. Ligero, R. A., Casas-Ruiz, M., Barrera, M., Barbero, L., & Meléndez, M. J. (2010). An alternative radiometric method for calculating the sedimentation rates: Application to an intertidal region (SW of Spain). Appl. Radiat. Isot., 68, 1602–1609.10.1016/j.apradiso.2010.02.010
  5. 5. Ligero, R. A., Barrera, M., & Casas-Ruiz, M. (2005). Levels of 137Cs in muddy sediments of the seabed of the Bay of Cádiz, Spain. Part I: Vertical and spatial distribution of activities. J. Environ. Radioact., 80, 75–86.10.1016/j.jenvrad.2004.05.019
  6. 6. Ligero, R. A., Barrera, M., & Casas-Ruiz, M. (2005). Levels of 137Cs in muddy sediments on the seabed in the Bay of Cádiz, Spain. Part II: Model of vertical migration of 137Cs. J. Environ. Radioact., 80, 87–103.10.1016/j.jenvrad.2004.06.006
  7. 7. International Organization for Standardization. (1995). Guide to the expression of uncertainty in measurement. Geneva, Switzerland: ISO.
  8. 8. Bolívar, J. P., García-Tenorio, R., & García-León, M. (1994). A generalized transmission method for gamma-efficiency determination in soil samples. Nucl. Geophys., 8(5), 485–492.
  9. 9. Zikovsky, L. (1997). Variation of the detection efficiency of a Ge detector with the height of the sample in Marinelli beaker. J. Radioanal. Nucl. Chem., 224, 171–172.10.1007/BF02034634
  10. 10. Hubbell, J. H., & Seltzer, S. M. (1995). Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. Gaithersburg, MD: National Institute of Standards and Technology (NISTIR 5632). Available from http://physics.nist.gov/xaamdi.10.6028/NIST.IR.5632
  11. 11. Kitto, M. E. (1990). Mass attenuation coefficients of size-fractioned soil. J. Radioanal. Nucl. Chem.-Lett., 145(3), 175–182.10.1007/BF02202022
  12. 12. Cutshall, N. H., Larsen, I. L., & Olsen, C. R. (1983). Direct analysis of 210Pb in sediment samples: Self-absorption correction. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 206, 309–312.
  13. 13. Galloway, R. B. (1991). Correction for sample self-absorption in activity determination by gamma spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 300(2), 367–373.10.1016/0168-9002(91)90450-5
  14. 14. Haase, G., Tait, D., & Wiechen, A. (1993). Monte Carlo simulation of several gamma-emitting source and detector arrangements for determining corrections of self-attenuation and coincidence summation in gamma-spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 329(3), 483–492.10.1016/0168-9002(93)91284-T
  15. 15. Pham, M. K., Sanchez-Cabeza, J. A., Povinec, P. P., Andor, K., Arnold, D., Benmansour, M., Bikit, I., Carvalho, F. P., Dimitrova, K., Edrev, Z. H., Engeler, C., Fouche, F. J., Garcia-Orellana, J., Gasco, C., Gastaud, J., Gudelis, A., Hancock, G., Holm, E., Legarda, F., Ikaheimonen, T. K., Ilchmann, C., Jenkinson, A. V., Kanisch, G., Kis-Benedek, G., Kleinschmidt, R., Koukouliou, V., Kuhar, B., LaRosa, J., Lee, S.-H., LePetit, G., Levy-Palomo, I., Liong Wee Kwong, L., Llaurado, M., Maringer, F. J., Meyer, M., Michalik, B., Michel, H., Nies, H., Nour, S., Oh, J.-S., Oregioni, B., Palomares, J., Pantelic, G., Pfitzner, J., Pilvio, R., Puskeiler, L., Satake, H., Schikowski, J., Vitorovic, G., Woodhead, D., & Wyse, E. (2008). A new Certified Reference Material for radionuclides in Irish Sea sediment (IAEA-385). Appl. Radiat. Isot., 66(11), 1711–1717.10.1016/j.apradiso.2007.10.02018513984
  16. 16. Shakhashiro, A., Gondin da Fonseca Azeredo, A. M., Sansone, U., & Fajgelj, A. (2007). Matrix materials for proficiency testing: optimization of a procedure for spiking soil with gamma-emitting radionuclides. Anal. Bioanal. Chem., 387(7), 2509–2515.10.1007/s00216-006-0772-z17053921
  17. 17. Canberra Industries. (2013). Model S574 LabSOCS calibration software. Meriden CT, USA: Canberra Industries Inc. Available from http://www.canberra.com/products/insitu_systems/pdf/ISOCS-SSC40166.pdf.
DOI: https://doi.org/10.1515/nuka-2017-0007 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 47 - 59
Submitted on: May 31, 2016
|
Accepted on: Nov 7, 2016
|
Published on: Mar 4, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Manuel Barrera, Melquiades Casas-Ruiz, José J. Alonso, Juan Vidal, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.