Have a personal or library account? Click to login
Investigation of 99Mo potential production via UO2SO4 liquid target irradiation in a 5 MW nuclear research reactor Cover

Investigation of 99Mo potential production via UO2SO4 liquid target irradiation in a 5 MW nuclear research reactor

Open Access
|Mar 2017

References

  1. 1. Rao, A., Kumar Sharma, A., Kumar, P., Charyulu, M. M., Tomar, B. S., & Rama Kumar, K. L. (2014). Studies on separation and purification of fission 99Mo from neutron activated uranium aluminum alloy. J. Appl. Radiat. Isot., 89, 186–191. DOI: 10.1016/j.apradiso.2014.02.013.10.1016/j.apradiso.2014.02.01324657474
  2. 2. Muenze, R., Juergen Beyer, G., Ross, R., Wagner, G., Novotny, D., Franke, E., Jehangir, M., Pervez, S., & Mushtaq, A. (2013). The fission-based 99Mo production process ROMOL-99 and its application to PINSTECH Islamabad. Sci. Technol. Nucl. Install., 2013, Article ID 932546, 9 pp. http://dx.doi.org/10.1155/2013/932546.10.1155/2013/932546
  3. 3. Ali, K. L., Ahmad Khan, A., Mushtaq, A., Imtiaz, F., MaratabZiai, A., Gulzar, A., Farooq, M., Hussain, N., Ahmed, N., Pervez, S., & Zaidi, J. H. (2013). Development of low enriched uranium target plates by thermo-mechanical processing of UAl2–Al matrix for production of 99Mo in Pakistan. J. Nucl. Eng. Des., 255, 77–85. DOI: 10.1016/j.nucengdes.2012.10.014.10.1016/j.nucengdes.2012.10.014
  4. 4. Burril, K. A., & Harrison, R. J. (1989). Development of the 99Mo process at CRNL. In Fission molybdenum for medical use. Proceedings of Technical Committee Meeting organized by the International Atomic Energy Agency and held in Karlsruhe, 13–16 October 1987 (pp. 35–46). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-515).
  5. 5. Arino, H., Kramer, H. H., McGovern, J. J., & Thornton, A. K. (1974). Production of high purity fission product molybdenum-99. U.S. Patent 3,799,883.
  6. 6. Youker, A. J., Chemerisov, S. D., Kalensky, M., Tkac, P., Bowers, D. L., & Vandegrift, G. F. (2013). A solution-based approach for Mo-99 production: Considerations for nitrate versus sulfate media. J. Sci. Technol. Nucl. Install., 2013, Article ID 402570, 10 pp. http://dx.doi.org/10.1155/2013/402570.10.1155/2013/402570
  7. 7. Bennett, M. E., Bowers, D. L., Pereira, C., & Vandegrift, G. F. (2014). Conversion of uranyl sulfate solution to uranyl nitrate solution for processing in UREX. In 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. (S9-P1, 11 pp.). Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S9P1%20Paper%20Bennett.pdf.
  8. 8. Elgin, K. (2014). A study of the feasibility of 99Mo production inside the TU Delft Hoger Onderwijs Reactor, A Monte Carlo serpent analysis of the HOR research reactor and its medical isotope production capabilities using uranium salts. Thesis, Delft University of Technology, The Netherlands.
  9. 9. Micklich, B. J. (2015). Remanent activation in the mini-SHINE experiments. In 3rd International Workshop on Accelerator Radiation Induced Activation (ARIA’15), 15–17 April 2015, Knoxville, Tennessee, USA (36 pp.). Available from https://public.ornl.gov/neutrons/conf/aria2015/presentations/12%20Remanent%20Activation%20in%20the%20mini-SHINE%20Experiments.pdf.
  10. 10. May, I., Rios, D., Anderson, A. S., Bitteker, L., Copping, R., Dale, G. E., Dalmas, D. A., Gallegos, M. J., Garcia, E. K., Kelsey, C. T., Mocko, M., Reilly, S. D., Stephens, F. H., Taw, F. L., & Woloshun, K. A. (2013). A technical demonstration of the initial stage of Mo-99 recovery from a low enriched uranium sulfate solution. Los Alamos National Laboratory. (LA-UR-13-28967).10.2172/1107941
  11. 11. Ball, R. M. (1997). Characteristics of nuclear reactors used for the production of molybdenum-99. In Production technologies for molybdenum-99 and technetium-99m (pp. 5–17). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1065). Availaible from http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/30/013/30013597.pdf.
  12. 12. Pelowitz, D. B. (2008). MCNPX User’s Manual. Version 2.6.0.s.l. Los Alamos National Laboratory. (LA-CP-07-1473).
  13. 13. Fensin, M. L. (2008). Development of the MCNPX depletion capability: A Monte Carlo depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations. Florida University.
  14. 14. IAEA. (2008). Homogeneous aqueous solution nuclear reactors for the production of Mo-99 and other short lived radioistotopes. Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601).
  15. 15. Briesmeister, J. F. (2000). MCNP-A General Monte Carlo N-Particle Transport code Version 4C. Los Alamos National Laboratory. (LA-13709-M).
  16. 16. Gallmeier, F. X., Iverson, E. B., Lu, W., Ferguson, P. D., Holloway, S. T., Kelsey, Ch., Muhrer, G., Pitcher, E., Wohlmuther, M., & Micklich, B. (2010). The CINDER’90 transmutation code package for use in accelerator applications in combination with MCNPX. In Proceedings of the19th Meeting on Collaboration of Advanced Neutron Sources, March 8–12, 2010 (6 pp.), Grindelwald, Switzerland. Available from http://www.iaea.org/inis/collection/NCLCollection-Store/_Public/46/109/46109595.pdf?r=1.
  17. 17. Slessarev, I. (2000). Long term radiotoxicity. Lecture given at the Workshop on Nuclear Data and Nuclear Reactors: Physics, Design and Safety, Trieste, 13 March – 14 April, 2000 (LNS015029). Available from http://users.ictp.it/~pub_off/lectures/lns005/Number_2/Slessarev_1.pdf.
  18. 18. Rijnsdorp, S. (2014). Design of a small Aqueous Homogeneous Reactor for production of 99Mo. M.Sc. Thesis, Delft University of Technology, The Netherlands. Available from http://www.janleenkloosterman.nl/reports/thesis_rijnsdorp_2014.pdf.
  19. 19. Köster, U. (2011). Present day production of 99Mo and alternatives. Grenoble: Institut Laue Langevin.
  20. 20. Mohammad, A., Mahmood, T., & Iqbal, M. (2009). Fission MOLY production at PARR-1 using LEU plate type target. J. Nucl. Eng. Des., 239, 521–525. DOI: 10.1016/j.nucengdes.2008.11.008.10.1016/j.nucengdes.2008.11.008
  21. 21. Tárkányi, F., Hermanne, A., Takács, S., Sonck, M., Szücs, Z., Király, B., & Ignatyuk, A. V. (2011). Investigation of alternative production routes of 99mTc: deuteron induced reactions on 100Mo. J. Appl. Radiat. Isot., 69, 18–25. DOI: 10.1016/j.apradiso.2010.08.006.10.1016/j.apradiso.2010.08.00620817541
  22. 22. Ruth, T. J. (2015). The medical isotope crisis: How we got here and where we are going. Vancouver, British Columbia, Canada: TRIUMF and the British Columbia Cancer Agency.
  23. 23. Jun, B. J., Tanimoto, M., Kimura, A., Hori, N., Izumo, H., & Tsuchia, K. (2010). Feasibility study on mass production of (n,γ)99Mo. Japan Atomic Energy Agency. (JAEA-Research 2010-046).
  24. 24. Rosenthal, G. B., & Lewin, H. C. (2014). Production of 99Mo using high-current alpha beams. In NNSA’s 2014 Mo-99 Topical Meeting, 24–27 June 2014, Washington D.C. Available from http://mo99.ne.anl.gov/2014/pdfs/papers/S11P4%20Paper%20Rosenthal.pdf.
  25. 25. Faghihian, H., Malekpour, A., & Maragheh, M. G. (2003). Modification of clinoptilolite by surfactants for molibdate (99Mo) adsorption from aqueous solutions. J. Sci. Islamic Republic of Iran, 14, 239–245.
  26. 26. Stepinski, D. C., Gelis, A. V., Gentner, P., Bakel, A., & Vandegrift, G. F. (2008). Evaluation of Radsorb, Isosorb (Termoxid) and PZC as potential sorbents for separation of 99Mo from a homogeneous-reactor fuel solution. In Homogeneous aqueous solution nuclear reactor for the production of Mo-99 and other short lived radioisotopes (pp. 73–80). Vienna: International Atomic Energy Agency. (IAEA-TECDOC-1601). Available from http://www-pub.iaea.org/MTCD/Publications/PDF/te_1601_web.pdf.
  27. 27. Ling, L., Chung, P. L., Youker, A., Stepinski, D. C., Vandegrift, G. F., & Wang, N. H. L. (2013). Capture chromatography for Mo-99 recovery from uranyl sulfate solutions: Minimum-column-volume design method. J. Chromatogr. A, 1309, 1–14. DOI: 10.1016/j.chroma.2013.08.023.10.1016/j.chroma.2013.08.02323972458
  28. 28. Dale, G. E., Dalmas, D. A., Gallegos, M. J., Jackman, K. R., Kelsey, C. T., May, I., Reilly, S. D., & Stange, G. M. (2012). 99Mo separation from high-concentration irradiated uranium nitrate and uranium sulfate solutions. J. Ind. Eng. Chem. Res., 51, 13319–13322. DOI: 10.1021/ie3008743.10.1021/ie3008743
  29. 29. Wu, D., Landsberger, S., Buchholz, B. A., & Vandegrift, G. F. (1994). Processing of LEU targets for 99Mo productiontesting and modification of the cintichem process. Lecture presented at the 1995 International Meeting on Reduced Enrichment for Research and Test Reactors, September 18–21, 1994, Paris, France. Available from http://www.rertr.anl.gov/MO99/WU95.pdf.
DOI: https://doi.org/10.1515/nuka-2017-0006 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 37 - 45
Submitted on: Jan 30, 2016
|
Accepted on: Nov 7, 2016
|
Published on: Mar 4, 2017
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Zohreh Gholamzadeh, Seyed Mohammad Mirvakili, Amin Davari, Mosoumeh Alizadeh, Atieh Joz-Vaziri, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.