Have a personal or library account? Click to login
Thermal stability of the krypton Hall effect thruster Cover

Thermal stability of the krypton Hall effect thruster

Open Access
|Mar 2017

References

  1. 1. Morozov, A. I., & Savelyev, V. V. (2000). Fundamentals of stationary plasma thruster theory. Rev. Plasma Phys., 21, 203–391.10.1007/978-1-4615-4309-1_2
  2. 2. Kim, V., Popov, G., Arkhipov, B., Murashko, V., Gorshkov, O., Koroteyev, A., Garkusha, V., Semenkin, A., & Tverdokhlebov, S. (2001). Electric propulsion activity in Russia. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 05).
  3. 3. European Space Agency. (2009, August 1). SMART-1 overview. Retrieved from www.esa.int/Our_Activities/Space_Science/SMART-12.
  4. 4. Zhurin, V. V., Kaufman, H. R., & Robinson, R. S. (1999). Physics of closed drift thrusters. Plasma Sources Sci. Technol., 8, R1–R20.10.1088/0963-0252/8/1/021
  5. 5. Goebel, D. M., & Katz, I. (2008). Fundamentals of electric propulsion: Ion and Hall Thrusters. Hoboken, New Jersey: Wiley.10.1002/9780470436448
  6. 6. Ahedo, E., & Gallardo, J. M. (2003). Scaling down Hall thrusters. In Proceedings of the 28th International Electric Propulsion Conference, Toulouse, France (paper 104).
  7. 7. Dannenmayer, K., & Mazouffre, S. (2011). Elementary scaling relations for Hall Effect Thrusters. J. Propul. Power, 27, 236–245.10.2514/1.48382
  8. 8. Shagayda, A. A. (2013). On scaling of Hall Effect Thrusters. In Proceedings of the 33rd International Electric Propulsion Conference, Washington, D.C., USA (paper 56).
  9. 9. Kurzyna, J., & Daniłko, D. (2011). IPPLM Hall Effect Thruster – design guidelines and preliminary tests. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 221).
  10. 10. Kurzyna, J., Barral, S., Daniłko, D., Miedzik, J., Bulit, A., & Dannenmayer, K. (2014). First tests of the KLIMT Thruster with Xenon propellant at the ESA Propulsion Laboratory, Space Propulsion Conference, Cologne, Germany.
  11. 11. Makela, J. M., Washeleski, R. L., Massey, D. R., King, L. B., & Hopkins M. A. (2009). Development of a magnesium and zinc Hall-Effect Thruster. In Proceedings of the 31st International Electric Propulsion Conference, Ann Arbor, Michigan, USA (paper 107).
  12. 12. Scharfe, D. B. (2009). Alternative Hall thruster propellants krypton and bismuth: Simulated performance and characterization. Ph.D. thesis, Stanford University.
  13. 13. Nakles, M. R., William Jr., A. H., Delgado, J. J., & Corey R. L. (2011). A performance comparison of xenon and krypton propellant on an SPT-100 Hall Thruster. In Proceedings of the 32nd International Electric Propulsion Conference, Wiesbaden, Germany (paper 003).10.21236/ADA549666
  14. 14. Kim, V., Popov, G., Kozlov, V., Skrylnikov, A., & Grdlichko, D. (2001). Investigation of SPT performance and particularities of its operation with Kr and Kr/Xe mixtures. In Proceedings of the 27th International Electric Propulsion Conference, Pasadena, CA, USA (paper 065).
  15. 15. Linnell, J. A., & Gallimore, A. D. (2005). Efficiency analysis of a Hall Thruster operating with krypton and xenon. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition, Tucson, Arizona, USA (paper 3683).10.2514/6.2005-3683
  16. 16. CORDIS. (2013). Final report to FP7 European project HiPER (High Power Electric propulsion: A roadmap for the future). Contract no. 218859. EC Community Research and Development Information Service.
  17. 17. Kurzyna, J. (2014). Numerical investigation of the Krypton Large IMpulse Thruster. Phys. Scripta, T161, 014051(4 pp.).10.1088/0031-8949/2014/T161/014051
  18. 18. Kurzyna, J., Szelecka, A., Daniłko, D., Barral, S., Dannenmayer, K., Bosch Borras, E., & Schönherr, T. (2016). Testing KLIMT prototypes at IPPLM and ESA Propulsion Laboratories. In Proceedings of Space Propulsion, Rome, Italy.
  19. 19. Meeker, D. C. (2010). Finite element method magnetics. Version 4.2 Nov. Build, http://www.femm.info.
  20. 20. Barral, S., & Brayer, C. (1997). CRATHER: un code de Conduction-RAdiation THERmique. National Center for Scientific Research, France.
  21. 21. Çengel, Y. A. (2002). Heat transfer – a practical approach (2nd ed.). Boston: McGraw Hill.
  22. 22. Włodarski, Z. (2006). Analytical description of magnetization curves. Phys. B-Condens. Matter, 373, 323–327.10.1016/j.physb.2005.12.242
  23. 23. Włodarski, Z., & Włodarska, J. (1998). Analytical approximation of the dependence of magnetic material properties on temperature. COMPEL, 402–406.10.1108/03321649810203350
  24. 24. Ceramawire. (2011). Ceramawire High Temperature Magnet Wire Technical Specs. http://www.ceramawire.com/technical-information.shtml#2.
  25. 25. Longmier, B. W., Reid, B. M., Gallimore, A. D., Chang-Díaz, F. R., Squire, J. P., Glover, T. W., Chavers, G., & Bering III, E. A. (2009). Validating a plasma momentum flux sensor to an inverted pendulum thrust stand. J. Propul. Power, 25, 746–752.10.2514/1.35706
DOI: https://doi.org/10.1515/nuka-2017-0002 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 9 - 15
Submitted on: Aug 31, 2016
Accepted on: Dec 19, 2016
Published on: Mar 4, 2017
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2017 Agnieszka Szelecka, Jacek Kurzyna, Loic Bourdain, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.