Have a personal or library account? Click to login
Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination Cover

Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

Open Access
|Mar 2016

References

  1. 1. Thurston, G. D., & Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in Metropolitan Boston. Atmos. Environ., 19, 9–25.10.1016/0004-6981(85)90132-5
  2. 2. Thurston, G. D., & Spengler, J. D. (1985). A multivariate assessment of meteorological influences on inhalable particle source impacts. J. Clim. Appl. Meteorol., 24, 1245–1256.10.1175/1520-0450(1985)024<;1245:AMAOMI>2.0.CO;2
  3. 3. Song, Y., Xie, S., Zhang, Y., Zeng, L., Salmon, L. G., & Zheng, M. (2006). Source apportionment of PM2.5 in Beijing using Principal Component Analysis/Absolute Principal Component scores and UNMIX. Sci. Total Environ., 372, 278–286. DOI: 10.1016/j.scitotenv.2006.08.041.10.1016/j.scitotenv.2006.08.041
  4. 4. Samek, L. (2012). Source apportionment of PM10 fraction of particulate matter collected in Krakow, Poland. Nukleonika, 57(4), 601–606.
  5. 5. Samek, L., Gdowik, A., Ogarek, J., & Furman, L. (2016). Elemental composition and rough source apportionment of fine particulate matter in Krakow, Poland. Environ. Prot. Eng. (in press).
  6. 6. Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2006). Approaching PM2.5 and PM2.5-10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Sci. Total Environ., 368, 663–674. DOI: 10.1016/j.scitotenv.2006.03.031.10.1016/j.scitotenv.2006.03.031
  7. 7. Pandolfi, M., Viana, M., Minguillon, M. C., Querol, X., Alastuey, A., Amato, F., Celades, I., Escrig, A., & Monfort, E. (2008). Receptor models application to multi-year ambient PM10 measurements in an industrialized ceramic area: Comparison of source apportionment results. Atmos. Environ., 42, 9007–9017. DOI: 10.1016/j.atmosenv.2008.09.029.10.1016/j.atmosenv.2008.09.029
  8. 8. Viana, M., Kuhlbusch, T. A. J., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K., Winiwarter, W., Vallius, M., Szidat, S., Prevot, A. S. H., Hueglin, C., Bloemen, H., Wahlin, P., Vecchi, R., Miranda, A. I., Kasper-Giebl, A., Maenhaut, W., & Hitzenberger, R. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Aerosol Sci., 39, 827–849. DOI: 10.1016/j.jaerosci.2008.05.007.10.1016/j.jaerosci.2008.05.007
  9. 9. Almeida, M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in sub-urban area at Western European Coast. Atmos. Environ., 39, 3127–3138. DOI: 10.1016/j.atmosenv.2005.01.048.10.1016/j.atmosenv.2005.01.048
  10. 10. Almeida, S. M., Reis, M. A., Freitas, M. C., & Pio, C. A. (2007). Quality assurance in elemental analysis of airborne particles. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 207, 434–446. DOI: 10.1016/so168-583x(03)01119-4.
  11. 11. Vallius, M., Janssen, N. A. H., Heinrich, J., Hoek, G., Ruuskanen, J., Cyrys, J., Van Grieken, R., de Hartog, J. J., Kreyling, W. G., & Pekkanen, J. (2005). Sources and elemental composition of ambient PM2.5 in three European cities. Sci. Total Environ., 337, 147–162. DOI: 10.1016/j.scitotenv.2004.06.018.10.1016/j.scitotenv.2004.06.018
  12. 12. Hasheminassab, S., Daher, N., Ostro, B. D., & Siontas, C. (2014). Long term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles basin: A focus on emissions reduction from vehicular sources. Environ. Pollut., 193, 54–64. DOI: 10.1016/j.envpol.2014.06.012.10.1016/j.envpol.2014.06.012
  13. 13. Callen, M. S., Iturmendi, A., & Lopez, J. M. (2014). Source apportionment of atmospheric PM2.5 bound polycyclic aromatic hydrocarbons by a PMF receptor model. Assessment of potential risk for human health. Environ. Pollut., 195, 167–177. DOI: 10.1016/j.envpol.2014.08.025.10.1016/j.envpol.2014.08.025
  14. 14. Paatero, P., & Tapper, U. (1994). Positive matrix factorization: non negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126. DOI: 10.1002/env3170050203.
  15. 15. Paatero, P., & Hopke, P. K. (2003). Discarding or downweighting high noise variables in factor analytic models. Anal. Chim. Acta, 490, 277–289. DOI: 10.1016/S0003-2670(02)01643-4.10.1016/S0003-2670(02)01643-4
  16. 16. Kim, E., Hopke, P. K., & Qin, Y. (2005). Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment. J. Air Waste Manag. Assoc., 55, 1190–1199.10.1080/10473289.2005.1046470516187588
  17. 17. Hopke, P. K., Ito, K., Mar, T., Christensen, W. F., Eatough, D. J., Henry, R. C., Kim, E., Laden, F., Lall, R., Larson, T. V., Liu, H., Neas, L., Pinto, J., Stölzel, M., Suh, H., Paatero, P., & Thurston, G. D. (2006). PM source apportionment and health effects: Intercomparison of source apportionment results. J. Expo. Sci. Environ. Epidemiol., 16, 275–286. DOI: 10.1038/sj.jea.7500458.10.1038/sj.jea.750045816249798
  18. 18. PN-EN 12341. (2006). Air quality-determination of the PM10 fraction of suspended particulate matter – reference method and field test procedure to demonstrate reference equivalence of measurement methods. 19. PN-EN 14907. (2006). Ambient air quality-standard gravimetric measurement method for the determination of the PM2.5 mass fraction of suspended particular matter.
  19. 20. http://www.canberra.com (accessed 12 August 2015).
  20. 21. Vekemans, B., Janssens, K., Vincze, L., Adams, F., & Van Espin, P. (1994). Analysis of X-ray spectra by iterative least squares (AXIL): new developments. X-Ray Spectrom., 23, 278–285.10.1002/xrs.1300230609
  21. 22. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008.
  22. 23. Begun, B. A., Hopke, P. K., & Zhao, W. (2005). Source identification of fine particles in Washington, DC, by expanded factor analysis modelling. Environ. Sci. Technol., 39, 1129–1137. DOI: 10.1021/es049804v.10.1021/es049804v15773486
  23. 24. Samek, L., Zwozdziak, A., & Sowka, I. (2013). Chemical characterization and source identification of particulate matter PM10 in a rural and urban site in Poland. EPE, 39, 91–103. DOI: 10.5277/epe130408.
  24. 25. Lammel, G., Rohrl, A., & Schreiber, H. (2002). Atmospheric lead and bromine in Germany. Post-abatement levels, variabilities and trends. Environ. Sci. Pollut., 9, 397–404.10.1007/BF0298758912515348
  25. 26. Laugh, G. C., Schauer, J. J., Park, J. S., Shafer, M. M., Deminter, J. T., & Weinstein, J. P. (2005). Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol., 39, 826–836. DOI: 10.1021/es048715f.10.1021/es048715f15757346
DOI: https://doi.org/10.1515/nuka-2016-0014 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 75 - 83
Submitted on: Aug 12, 2015
Accepted on: Jan 26, 2016
Published on: Mar 17, 2016
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2016 Lucyna Samek, Zdzislaw Stegowski, Leszek Furman, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.