Have a personal or library account? Click to login

Electron beam irradiation of r-SANEX and i-SANEX solvent extraction systems: analysis of gaseous products

Open Access
|Dec 2015

References

  1. 1. Rydberg, J., Cox, M., Musikas, C., Choppin, G. R. (Eds.). (2004). Solvent extraction principles and practice. 2nd ed., revised and expanded. New York: Marcel Dekker.
  2. 2. Hill, C. (2009). Overview of recent advances in An(III)/ Ln(III) separation by solvent extraction. In B. A. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-194). CRC Press.10.1201/9781420059700-c3
  3. 3. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236. DOI: 10.1021/cr3003399.10.1021/cr300339923360356
  4. 4. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444. DOI: 10.1080/07366299.2012.671111.10.1080/07366299.2012.671111
  5. 5. Wilden, A., Schreinemachers, C., Sypula, M., & Modolo, G. (2011). Direct selective extraction of actinides (III) from PUREX raffi nate using a mixture of CyMe4BTBP and TODGA as 1-cycle SANEX solvent. Solvent Extr. Ion Exch., 29, 190-212. DOI: 10.1080/07366299.2011.539122.10.1080/07366299.2011.539122
  6. 6. Geist, A., Hill, C., Modolo, G., Foreman, M. R. S. J., Weigl, M., Gompper, K., & Hudson, M. J. (2006). 6,6ʹ-bis (5,5,8,8-tetramethyl-5,6,7,8-tetrahydro- benzo[1,2,4]triazin-3-yl)[2,2ʹ]bipyridine, an effective extracting agent for the separation of americium(III) and curium(III) from the lanthanides. Solvent Extr. Ion Exch., 24, 463-483. DOI: 10.1080/07366290600761936.10.1080/07366290600761936
  7. 7. Spinks, J. W. T., & Woods, R. J. (1976). An introduction to radiation chemistry. New York: Wiley.
  8. 8. Allen, D., Baston, G., Bradley, A. E., Gorman, T., Haile, A., Hamblett, I., Hatter, J. E., Healey, M. J. F., Hodgson, B., Lewin, R., Lovell, K. V., Newton, B., Pitner, W. R., Rooney, D. W., Sanders, D., Seddon, K. R., Sims, H. E., & Thied, R. C. (2002). An investigation of the radiochemical stability of ionic liquids. Green Chemistry, 4, 152-158. DOI: 10.1039/B111042j.10.1039/b111042j
  9. 9. Cheng, Y. -S., Zhou, Y., Chow, J., Watson, J., & Frazier, C. (2001). Chemical composition of aerosols from kerosene heaters burning jet fuels. Aerosol Sci. Technol., 35, 949-957. DOI: 10.1080/027868201753306714.10.1080/027868201753306714
  10. 10. Lam, N. L., Smith, K. R., Gauthier, A., & Bates, M. N. (2012). Kerosene: A review of household uses and their hazards in low- and middle-income countries. J. Toxicol. Environ. Health Part B, 15, 396-432. DOI: 10.1080/10937404.2012.710134.10.1080/10937404.2012.710134366401422934567
  11. 11. Spasov, G. M., Gerasimov, M. M., Siryuk, A. G., & Zimina, K. I. (1967). Chemical composition of kerosene- gas-oil fractions of the Bulgarian crudes. Chem. Technol. Fuels Oils, 3, 556-560. DOI: 10.1007/ bf00729941.10.1007/BF00729941
  12. 12. Dewhurst, H. A. (1957). Radiation chemistry of organic compounds. 1. N-alkane liquids. J. Phys. Chem., 61, 1466-1471. DOI: 10.1021/J150557a004.10.1021/j150557a004
  13. 13. Swallow, A. J. (1960). Radiation chemistry of organic compounds. Oxford: Pergamon Press.
  14. 14. Kharasch, M. S., Chang, P. C., & Wagner, C. D. (1958). Radiolysis of 1-hexene. J. Org. Chem., 23, 779-780. DOI: 10.1021/Jo01099a628.10.1021/jo01099a628
  15. 15. LaVerne, J. A., & Schuler, R. H. (1984). Track effects in radiation chemistry: Core processes in heavy- -particle tracks as manifest by the H2 yield in benzene radiolysis. J. Phys. Chem., 88(6), 1200-1205. DOI: 10.1021/J150650a037.10.1021/j150650a037
  16. 16. Jones, K. H., Van Dusen Jr, W., & Theard, L. M. (1964). Intermolecular and intramolecular energy transfer in gamma-irradiated alkylbenzenes and related mixtures. Radiat. Res., 232, 128-134.10.2307/3571685
  17. 17. Schoepfle, C. S., & Fellows, C. H. (1931). Gaseous products from action of cathode rays on hydrocarbons. Ind. Eng. Chem., 23, 1396-1398. DOI: 10.1021/ ie50264a020.10.1021/ie50264a020
  18. 18. Manion, J. P., & Burton, M. (1952). Radiolysis of hydrocarbon mixtures. J. Phys. Chem., 56, 560-569. DOI: 10.1021/J150497a005.10.1021/j150497a005
  19. 19. Mcdonell, W. R., & Newton, A. S. (1954). The radiation chemistry of the aliphatic alcohols. J. Am. Chem. Soc., 76, 4651-4658. DOI: 10.1021/Ja01647a051.10.1021/ja01647a051
  20. 20. Dewhurst, H. A. (1958). Radiation chemistry of organic compounds. 3. Branched chain alkanes. J. Am. Chem. Soc., 80, 5607-5610. DOI: 10.1021/Ja01554a006.10.1021/ja01554a006
  21. 21. Geist, A. (2010). Extraction of nitric acid into alcohol: Kerosene mixtures. Solvent Extr. Ion Exch., 28, 596-607. DOI: 10.1080/07366299.2010.499286.10.1080/07366299.2010.499286
  22. 22. Nagaishi, R. (2001). A model for radiolysis of nitric acid and its application to the radiation chemistry of uranium ion in nitric acid medium. Radiat. Phys. Chem., 60, 369-375. DOI: 10.1016/S0969-806x(00)00410-2.10.1016/S0969-806X(00)00410-2
  23. 23. Katsumura, Y. (1998). NO2 and NO3 radicals in the radiolysis of nitric acid solutions. In Z. B. Alfassi (Ed.), The chemistry of free radicals: N-centered radicals (pp. 393-412). Chichester: John Wiley & Sons.
  24. 24. Garrett, B. C., Dixon, D. A., Camaioni, D. M., Chipman, D. M., Johnson, M. A., Jonah, C. D., Kimmel, G. A., Miller, J. H., Rescigno, T. N., Rossky, P. J., Xantheas, S. S., Colson, S. D., Laufer, A. H., Ray, D., Barbara, P. F., Bartels, D. M., Becker, K. H., Bowen Jr, K. H., Bradforth, S. E., Carmichael, I., Coe, J. V., Corrales, L. R., Cowin, J. P., Dupuis, M., Eisenthal, K. B., Franz, J. A., Gutowski, M. S., Jordan, K. D., Kay, B. D., Laverne, J. A., Lymar, S. V., Madey, T. E., McCurdy, C. W., Meisel, D., Mukamel, S., Nilsson, A. R., Orlando, T. M., Petrik, N. G., Pimblott, S. M., Rustad, J. R., Schenter, G. K., Singer, S. J., Tokmakoff, A., Wang, L. S., Wettig, C., & Zwier, T. S. (2005). Role of water in electron-initiated processes and radical chemistry: issues and scientifi c advances. Chem. Rev., 105(1), 355-390. DOI: 10.1021/cr030453x.10.1021/cr030453x15720157
  25. 25. Burns, W. G., & Moore, P. B. (1976). Water radiolysis and its effect upon in-reactor zircaloy corrosion. Radiat. Eff. Defects Solids, 30(4), 233-242. DOI: 10.1080/00337577608240827.10.1080/00337577608240827
  26. 26. Elliot, A. J., Chenier, M. P., & Ouellette, D. C. (1990). G-values for gamma-irradiated water as a function of temperature. Can. J. Chem., 68(5), 712-719. DOI: 10.1139/V90-111.10.1139/v90-111
  27. 27. Kanjana, K., Haygarth, K. S., Wu, W., & Bartels, D. M. (2013). Laboratory studies in search of the critical hydrogen concentration. Radiat. Phys. Chem., 82, 25-34. DOI: 10.1016/j.radphyschem.2012.09.011.10.1016/j.radphyschem.2012.09.011
  28. 28. von Sonntag, C. (2006). Free-radical-induced DNA damage and its repair. Berlin-Heidelberg: Springer.10.1007/3-540-30592-0
  29. 29. Basson, R. A., & van der Linde, H. J. (1967). Polarity effects in radiolysis of n-alcohols. J. Chem. Soc. A, 1, 28-32. DOI: 10.1039/J19670000028.10.1039/j19670000028
  30. 30. Katsumura, Y., Sunaryo, G., Hiroishi, D., & Ishigure, K. (1998). Fast neutron radiolysis of water at elevated temperatures relevant to water chemistry. Prog. Nucl. Energy, 32(1/2), 113-121. DOI: 10.1016/S0149-1970(97)00011-5.10.1016/S0149-1970(97)00011-5
  31. 31. Cashdollar, K. L., Zlochower, I. A., Green, G. M., Thomas, R. A., & Hertzberg, M. (2000). Flammability of methane, propane, and hydrogen gases. J. Loss Prev. Process Ind., 13(3/5), 327-340. DOI: 10.1016/ S0950-4230(99)00037-6.10.1016/S0950-4230(99)00037-6
  32. 32. Holmstedt, G. S. (1971). The upper limit of fl ammability of hydrogen in air, oxygen, and oxygen-inert mixtures at elevated pressures. Combust. Flame, 17(3), 295-301. DOI: 10.1016/S0010-2180(71)80051-2.10.1016/S0010-2180(71)80051-2
  33. 33. Wierzba, I., & Kilchyk, V. (2001). Flammability limits of hydrogen-carbon monoxide mixtures at moderately elevated temperatures. Int. J. Hydrogen Energy, 26(6), 639-643. DOI: 10.1016/S0360-3199(00)00114-2.10.1016/S0360-3199(00)00114-2
  34. 34. Zabetakis, M. G. (1965). Flammability characteristics of combustible gases and vapors. Washington D.C.: U.S. Department of Interior, Bureau of Mines.
DOI: https://doi.org/10.1515/nuka-2015-0157 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 899 - 905
Submitted on: Jun 29, 2015
Accepted on: Sep 16, 2015
Published on: Dec 30, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Tomasz Szreder, Rafał Kocia, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.