Have a personal or library account? Click to login

A calculation model for liquid-liquid extraction of protactinium by 2,6-dimethyl-4-heptanol

Open Access
|Dec 2015

References

  1. 1. King, J.C. (1987). The impact of separation science and technology on some key technological challenges facing society. In R. Price (Ed.), Separation and purification: Critical needs and opportunities. Washington, D. C., USA: National Academy Press.
  2. 2. Nuclear Energy Agency with Working Party on Nuclear Criticality Safety and Expert Group on Assay Data of Spent Nuclar Fuel. (2011). Spent nuclear fuel assay data for isotopic validation. Organisation for Economic Co-operation and Development. NEA.
  3. 3. International Atomic Energy Agency. (2007). Use of reprocessed uranium. In Technical Committee Meeting. Vienna, Austria: IAEA. (IAEA-TECDOC-CD-1630).
  4. 4. Simpson, M. F., & Law, J. D. (2010). Nuclear fuel reprocessing. Idaho Falls, Idaho: Idaho National Laboratory. (INL/EXT-10-17753).10.2172/974763
  5. 5. Kirby, H. W. (1959). The radiochemistry of protactinium. National Academy of Sciences National Research Council. (Nuclear Series, NAS-NS 3016).
  6. 6. Rydberg, J., Musikas, C., Choppin, G. R., & Cox, M. (2004). Solvent extraction principles, and practices. 2nd ed. New York: Marcel Dekker.
  7. 7. Multi-Agency Radiological Laboratory Analytical Protocols Manual. (2004). 14.4 Solvent Extraction. (NUREG-1576), (EPA 402-B-04-001A), (NTIS PB2004-105421).
  8. 8. U. S. Department of Energy. (2011). Nuclear separations technologies workshop report: Getting from where we are to where we want to be in nuclear separations technologies. Bethesda, Maryland.
  9. 9. Kumari, N., Pathak, P. N., Prabhu, D. R., & Manchanda, V. K. (2012). Solvent extraction studies of protactinium for its recovery from short-cooled spent fuel and high-level waste solutions in thorium fuel cycle using diisobutyl carbinol (DIBC) as extractant. Desalin. Water Treat., 38(1/3), 46-51. DOI: 10.5004/ DWT.2012.2292.
  10. 10. Rampolla, D. S. (1982). U. S. Patent No. 4,344,912A. Method of increasing the deterrent to proliferation of nuclear fuels. U. S. Department of Energy.
  11. 11. National Nuclear Data Center. (2015). Infomation extracted from the NuDat 2 database. http://www.nndc.bnl.gov/nudat2.
  12. 12. Eppich, G. R., William, R. W., Gaffney, A. M., & Schorzman, K. C. (2013). U-235-Pa-231 age dating of uranium materials for nuclear forensic investigations. J. Anal. At. Spectrom., 28(5), 666-674. DOI: 10.1039/C3ja50041a.10.1039/c3ja50041a
  13. 13. Trianti, N., Su’ud, Z., & Riyana, E. S. (2012). Design study of thorium-232 and protactinium-231 based fuel for long life BWR. In 3rd International Conference on Advances in Nuclear Science and Engineering. (1448, pp. 96-100).10.1063/1.4725442
  14. 14. Imamura, T., Saito, M., Yoshida, T., & Artisyuk, V. (2004). Production of Pa-U fuel with proliferation resistance by 14 MeV neutron for long-life core. J. Nucl. Sci. Technol., 40(6), 655-664.10.1080/18811248.2004.9715530
  15. 15. Tsvetkov, P. V., Kryuchkov, E. F., Shmelev, A. N., Apse, V. A., Kulikov, G. G., Masterov, S. V., Kulikov, E. G., & Glebov, V. B. (2011). Isotopic uranium and plutonium denaturing as an effective method for nuclear fuel proliferation protection in open and closed fuel cycles. In P. Tsvetkov (Ed.), Nuclear power - deployment, operation and sustainability (Chapter 14). Winchester, UK: InTech.
  16. 16. Myasoedov, B. F., Kirby, H. W., & Tananaev, I. G. (2010). Protactinium. In L. R. Morss, N. M. Edelstein, & J. Fuger (Eds.), The chemistry of the actinide and transactinide elements. Vol. 1. Dordrecht, Netherlands: Springer.
  17. 17. Berry, J. A., Hobley, J., Lane, S. A., Littleboy, A. K., Nash, M. J., Oliver, P., Smith-Briggs, J. L., & Williams, S. J. (1989). Solubility and sorption of protactinium in near-field and far-field environments of a radioactive waste repository. Analyst, 114, 339-347.10.1039/an9891400339
  18. 18. Forbes, T. Z., Burns, P. C., Soderholm, L., & Skanthakumar, S. (2007). Hydrothermal synthesis and structure of neptunium(V) oxide. In D. Dunn, C. Poinssot, & B. Begg (Eds.), Scientific basis for nuclear waste management XXX, (Vol. 985, pp. 401-406). Cambridge, UK: Cambridge University Press.
  19. 19. De Sio, S. M., & Wilson, R. E. (2014). Structural and spectroscopic studies of fluoroprotactinates. Inorg. Chem., 53(3), 1750-1755.10.1021/ic402877a
  20. 20. Eskandari Nasab, M. (2014). Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands. Fuel, 116, 595-600.10.1016/j.fuel.2013.08.043
  21. 21. Knight, A. W., Nelson, A. W., Eitrheim, E. S., Forbes, T. Z., & Schultz, M. K. (2015). A chromatographic separation of neptunium and protactinium using 1-octanol impregnated onto a solid phase support. J. Radioanal. Nucl. Chem. DOI: 10.1007/s10967-015-4124-3.10.1007/s10967-015-4124-3
  22. 22. Hill, C. (2010). Overview of recent advances in An(III)/Ln(III) separation by solvent extraction. In B. Moyer (Ed.), Ion exchange and solvent extraction. (A Series of Advances, Vol. 19, pp. 119-193). Boca Raton: CRC Press.
  23. 23. Box, G. E. P., Hunter, W. G., & Hunter, J. S. (1978). Statistics for experimenters: An introduction to design analysis and model building. New York: John Wiley and Sons.
  24. 24. Schultz, M. K., Inn, K. G. W., Lin, Z. C., Burnett, W. C., Smith, G., Biegalski, S. R., & Filliben, J. (1998). Identification of radionuclide partitioning in soils and sediments: Determination of optimum conditions for the exchangeable fraction of the NIST standard sequential extraction protocol. Appl. Radiat. Isot., 49(9/11), 1289-1293.10.1016/S0969-8043(97)10062-8
  25. 25. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination. Anal. Chem., 40(3), 586-593.10.1021/ac60259a007
  26. 26. Burnett, W. C., & Yeh, C. C. (1995). Separation of protactinium from geochemical materials via extraction chromatography. Radioact. Radiochem., 6(4), 22-32.
  27. 27. Regelous, M., Turner, S. P., Elliot, T. R., Rostami, K., & Hawkesworth, C. J. (2004) Measurement of femtogram quantities of protactinium in silicate rock samples by multicollector inductively coupled plasma mass spectrometry. Anal. Chem., 76(13), 3584-3589.10.1021/ac030374l
  28. 28. Knight, A. W., Eitrheim, E. S., Nelson, A. W., Nelson, S., & Schultz, M. K. (2014). A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials. J. Environ. Radioact., 134, 66-74.10.1016/j.jenvrad.2014.02.010
  29. 29. Silva, A., Delerue-Matos, C., & Fiuza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. J. Hazard. Mater., 124(1/3), 224-229.10.1016/j.jhazmat.2005.05.022
  30. 30. Scherff, H. -L., & Herrmann, G. (1966). Ionic species of pentavalent protactinium in hydrochloric acid solutions. Radiochim. Acta, 6(2), 53-61.10.1524/ract.1966.6.2.53
  31. 31. Casey, A. T., & Maddock, A. G. (1959). The chemistry of protactinium - some spectrophotometric observations. J. Inorg. Nucl. Chem., 10(1/2), 58-68.10.1016/0022-1902(59)80186-X
  32. 32. Guillaumont, R., Muxart, R., Bouissieres, G., & Haissinsky, M. (1960). Spectres Dabsorption Du Protactinium En Solution Aqueuse. J. Chim. Phys. Phys.-Chim. Biol., 57(11/12), 1019-1028.10.1051/jcp/1960571019
  33. 33. Hardy, C. J., Scargill, D., & Fletcher, J. M. (1958). Studies on protactinium(V) in nitric acid solutions. J. Inorg. Nucl. Chem., 7(3), 257-275.10.1016/0022-1902(58)80077-9
  34. 34. Spitsyn, V. I., & Dyachkov, R. A. (1964). Concentrating 231Pa from uranium production waste. J. Nucl. Energy AB, 18(12PA), 731.10.1016/0368-3230(64)90128-4
  35. 35. Hochberg, Y., & Tamhane, A. C. (1987). Multiple comparison procedures. New York: Wiley.10.1002/9780470316672
  36. 36. Spitsyn, V. I., Dyachkov, R. A., & Khlebnikov, V. P. (1964). State of protactinium in nitrate solutions. Dokl. Akad. Nauk SSSR, 157(1), 135-138.
  37. 37. Theil, H. (1971). Principles of econometrics. New York: John Wiley & Sons.
  38. 38. Theil, H. (1961). Economic forecasts and policy. 2nd ed. Amsterdam: North-Holland Publ. Co.
  39. 39. Anderson, M. J., & Whitcomb, P. J. (2007). DOE Simplified: Practical tools for effective experimentation. New York: Productivity.
DOI: https://doi.org/10.1515/nuka-2015-0154 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 837 - 845
Submitted on: Jul 1, 2015
Accepted on: Sep 26, 2015
Published on: Dec 30, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Andrew W. Knight, Eric S. Eitrheim, Andrew W. Nelson, Michael K. Schultz, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.