2. Zhang, P., & Lindemann, J. (2005). Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(10), 1011–1015. DOI: 10.1016/j.scriptamat.2005.01.026.10.1016/j.scriptamat.2005.01.026
3. Fouad, Y. (2011). Fatigue behavior of a rolled AZ31 magnesium alloy after surface treatment by EP and BB conditions. Alexandria Eng. J., 50(1), 23–27. DOI: 10.1016/j.aej.2011.01.004.10.1016/j.aej.2011.01.004
4. Pu, Z., Yang, S., Song, G. L., Dillon Jr, O. W., Puleo, D. A., & Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Mater., 65(6), 520–523. DOI: 10.1016/j.scriptamat.2011.06.013.10.1016/j.scriptamat.2011.06.013
5. Zaleski, R., & Zaleski, K. (2006). Positron annihilation in steel burnished by vibratory shot peening. Acta Phys. Pol. A, 110(5), 739–746.10.12693/APhysPolA.110.739
8. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A, 479(1/2), 37–44. DOI: 10.1016/j.msea.2007.06.016.10.1016/j.msea.2007.06.016
10. Čížek, J., Procházka, I., Smola, B., Stulíková, I., & Očenášek, V. (2007). Influence of deformation on precipitation process in Mg-15 wt.%Gd alloy. J. Alloys Compd., 430(1/2), 92–96. DOI: 10.1016/j.jallcom.2006.03.097.10.1016/j.jallcom.2006.03.097
11. Čížek, J., Vlček, M., Smola, B., Stulíková, I., Procházka, I., Kužel, R., Jäger, A., & Lejček, P. (2012). Vacancy-like defects associated with icosahedral phase in Mg-Y-Nd-Zr alloys modified by the addition of Zn. Scripta Mater., 66(9), 630–633. DOI: 10.1016/j.scriptamat.2012.01.054.10.1016/j.scriptamat.2012.01.054
14. Moia, F., Calloni, A., Ferragut, R., Dupasquier, A., Macchi, C. E., Somoza, A., & Jian Feng Nie (2009). Vacancy-solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study. Int. J. Mater. Res., 100(3), 378–381. DOI: 10.3139/146.110036.10.3139/146.110036
15. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., & Cherkaska, V. (2006). Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Phys. Status Solidi A, 203(3), 466–477. DOI: 10.1002/pssa.200521483.10.1002/pssa.200521483
16. Hautojärvi, P., Johansson, J., Vehanen, A., Yli-Kauppila, J., Hillairet, J., & Tzanétakis, P. (1982). Trapping of positrons at vacancies in magnesium. Appl. Phys. A, 27(1), 49–56. DOI: 10.1007/BF01197546.10.1007/BF01197546
17. Checchetto, R., Bazzanella, N., Kale, A., Miotello, A., Mariazzi, S., Brusa, R. S., Mengucci, P., Macchi, C., Somoza, A., Egger, W., & Ravelli, L. (2011). Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering. Phys. Rev. B, 84(5), 054115. DOI: 10.1103/PhysRevB.84.054115.10.1103/PhysRevB.84.054115
18. Luna, C. R., Macchi, C., Juan, A., & Somoza, A. (2013). Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J. Phys. Conf. Ser., 443(1), 012019. DOI: 10.1088/1742-6596/443/1/012019.10.1088/1742-6596/443/1/012019