Have a personal or library account? Click to login

Positron annihilation lifetime spectroscopy study of roller burnished magnesium alloy

Open Access
|Dec 2015

References

  1. 1. Zhang, P., & Lindemann, J. (2005). Influence of shot peening on high cycle fatigue properties of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(6), 485–490. DOI: 10.1016/j.scriptamat.2004.11.003.10.1016/j.scriptamat.2004.11.003
  2. 2. Zhang, P., & Lindemann, J. (2005). Effect of roller burnishing on the high cycle fatigue performance of the high-strength wrought magnesium alloy AZ80. Scripta Mater., 52(10), 1011–1015. DOI: 10.1016/j.scriptamat.2005.01.026.10.1016/j.scriptamat.2005.01.026
  3. 3. Fouad, Y. (2011). Fatigue behavior of a rolled AZ31 magnesium alloy after surface treatment by EP and BB conditions. Alexandria Eng. J., 50(1), 23–27. DOI: 10.1016/j.aej.2011.01.004.10.1016/j.aej.2011.01.004
  4. 4. Pu, Z., Yang, S., Song, G. L., Dillon Jr, O. W., Puleo, D. A., & Jawahir, I. S. (2011). Ultrafine-grained surface layer on Mg-Al-Zn alloy produced by cryogenic burnishing for enhanced corrosion resistance. Scripta Mater., 65(6), 520–523. DOI: 10.1016/j.scriptamat.2011.06.013.10.1016/j.scriptamat.2011.06.013
  5. 5. Zaleski, R., & Zaleski, K. (2006). Positron annihilation in steel burnished by vibratory shot peening. Acta Phys. Pol. A, 110(5), 739–746.10.12693/APhysPolA.110.739
  6. 6. Zaleski, K., & Zaleski, R. (2009). Badania warstwy wierzchniej stopu tytanu technikami wykorzystującymi anihilację pozytonów. Inżynieria Materiałowa, 5, 302–305.
  7. 7. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374(2), 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7
  8. 8. Mengucci, P., Barucca, G., Riontino, G., Lussana, D., Massazza, M., Ferragut, R., & Aly, E. H. (2008). Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater. Sci. Eng. A, 479(1/2), 37–44. DOI: 10.1016/j.msea.2007.06.016.10.1016/j.msea.2007.06.016
  9. 9. Djourelov, N., & Misheva, M. (1996). Source correction in positron annihilation lifetime spectroscopy. J. Phys.-Condens. Mat., 8(12), 2081. DOI: 10.1088/0953-8984/8/12/020.10.1088/0953-8984/8/12/020
  10. 10. Čížek, J., Procházka, I., Smola, B., Stulíková, I., & Očenášek, V. (2007). Influence of deformation on precipitation process in Mg-15 wt.%Gd alloy. J. Alloys Compd., 430(1/2), 92–96. DOI: 10.1016/j.jallcom.2006.03.097.10.1016/j.jallcom.2006.03.097
  11. 11. Čížek, J., Vlček, M., Smola, B., Stulíková, I., Procházka, I., Kužel, R., Jäger, A., & Lejček, P. (2012). Vacancy-like defects associated with icosahedral phase in Mg-Y-Nd-Zr alloys modified by the addition of Zn. Scripta Mater., 66(9), 630–633. DOI: 10.1016/j.scriptamat.2012.01.054.10.1016/j.scriptamat.2012.01.054
  12. 12. Dryzek, J., & Dryzek, E. (2007). The subsurface zone in magnesium alloy studied by positron annihilation techniques. Tribol. Int., 40(9), 1360–1368. DOI: 10.1016/j.triboint.2007.03.004.10.1016/j.triboint.2007.03.004
  13. 13. Ortega, Y., & Rıo, Jd. (2005). Study o f Mg-Ca alloys by positron annihilation technique. Scripta Mater., 52(3), 181–186. DOI: 10.1016/j.scriptamat.2004.09.033.10.1016/j.scriptamat.2004.09.033
  14. 14. Moia, F., Calloni, A., Ferragut, R., Dupasquier, A., Macchi, C. E., Somoza, A., & Jian Feng Nie (2009). Vacancy-solute interaction in magnesium alloy WE54 during artificial ageing: a positron annihilation spectroscopy study. Int. J. Mater. Res., 100(3), 378–381. DOI: 10.3139/146.110036.10.3139/146.110036
  15. 15. Čížek, J., Procházka, I., Smola, B., Stulíková, I., Kužel, R., Matěj, Z., & Cherkaska, V. (2006). Thermal development of microstructure and precipitation effects in Mg-10wt%Gd alloy. Phys. Status Solidi A, 203(3), 466–477. DOI: 10.1002/pssa.200521483.10.1002/pssa.200521483
  16. 16. Hautojärvi, P., Johansson, J., Vehanen, A., Yli-Kauppila, J., Hillairet, J., & Tzanétakis, P. (1982). Trapping of positrons at vacancies in magnesium. Appl. Phys. A, 27(1), 49–56. DOI: 10.1007/BF01197546.10.1007/BF01197546
  17. 17. Checchetto, R., Bazzanella, N., Kale, A., Miotello, A., Mariazzi, S., Brusa, R. S., Mengucci, P., Macchi, C., Somoza, A., Egger, W., & Ravelli, L. (2011). Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering. Phys. Rev. B, 84(5), 054115. DOI: 10.1103/PhysRevB.84.054115.10.1103/PhysRevB.84.054115
  18. 18. Luna, C. R., Macchi, C., Juan, A., & Somoza, A. (2013). Vacancy clustering in pure metals: some first principle calculations of positron lifetimes and momentum distributions. J. Phys. Conf. Ser., 443(1), 012019. DOI: 10.1088/1742-6596/443/1/012019.10.1088/1742-6596/443/1/012019
  19. 19. Brandt, W. (1974). Positron dynamics in solids. A ppl. Phys., 5(1), 1–23. DOI: 10.1007/BF01193389.10.1007/BF01193389
DOI: https://doi.org/10.1515/nuka-2015-0142 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 789 - 794
Submitted on: Jun 26, 2015
Accepted on: Aug 27, 2015
Published on: Dec 1, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Radosław Zaleski, Kazimierz Zaleski, Marek Gorgol, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.