Have a personal or library account? Click to login

Study on the effect of atmospheric gases adsorbed in MnFe2O4/MCM-41 nanocomposite on ortho-positronium annihilation

Open Access
|Dec 2015

References

  1. 1. Ajayan, P. M. (2003). Bulk metal and ceramics nanocomposites. In P. M. Ajayan, L. S. Schadler, & P. V. Braun (Eds.), Nanocomposite science and technology (pp. 1–76). Weinheim: Wiley-VCH Verlag GmbH & Co. KgaA.
  2. 2. Goworek, T. (2014). Positronium as a probe of small free volumes in crystals, polymers and porous media. Ann. UMCS Chemia, 69(1/2), 1–110. DOI: 10.2478/umcschem-2013-0012.10.2478/umcschem-2013-0012
  3. 3. Tao, S. J. (1972). Positronium annihilation in molecular substances. J. Chem. Phys., 56, 5499–5510. DOI: 10.1063/1.1677067.10.1063/1.1677067
  4. 4. Eldrup, M., Lightbody, D., & Sherwood, J. N. (1981). The temperature dependence of positron lifetimes in solid pivalic acid. Chem. Phys., 63, 51–58. DOI: 10.1016/0301-0104(81)80307-2.10.1016/0301-0104(81)80307-2
  5. 5. Schrader, D. M., & Jean, Y. C. (1988). Introduction. In D. M. Schrader, & Y. C. Jean (Eds.), Positron and positronium chemistry (pp. 1–26). Amsterdam: Elsevier.
  6. 6. Kuo-Sung, L., Hongmin, Ch., Somia, A., Jen-Pwu, Y., Wei-Song, H., Kuier-Rarn, L., Juin-Yih, L., Chien-Chieh, H., & Jean, Y. C. (2011). Determination of free-volume properties in polymers without orthopositronium components in positron annihilation lifetime spectroscopy. Macromolecules, 44, 6818–6826. DOI: 10.1021/ma201324k.10.1021/ma201324k
  7. 7. Zaleski, R., Dolecki, W., Kierys, A., & Goworek, J. (2012). n-Heptane adsorption and desorption on porous silica observed by positron annihilation lifetime spectroscopy. Microporous Mesoporous Mater., 154, 142–147. DOI: 10.1016/j.micromeso.2011.08.032.10.1016/j.micromeso.2011.08.032
  8. 8. Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., Chu, C. T. W., Olson, D. H., Sheppard, E. W., McCullen, S. B., Higgins, J. B., & Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc., 114(27), 10834–10843. DOI: 10.1021/ja00053a020.10.1021/ja00053a020
  9. 9. Goworek, T., Górniak, W., & Wawryszczuk, J. (1992). The sources of distortions and errors in the analysis of positron lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 321, 560–570. DOI: 10.1016/0168-9002(92)90068-F.10.1016/0168-9002(92)90068-F
  10. 10. Surowiec, Z., Wiertel, M., Zaleski, R., Budzyński, M., & Goworek, J. (2010). Positron annihilation study of iron oxide nanoparticles in mesoporous silica MCM-41 template. Nukleonika, 55(1), 91–96.
  11. 11. Kansy, J. (1996). Microcomputer program for analysis of positron annihilation lifetime spectra. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., 374, 235–244. DOI: 10.1016/0168-9002(96)00075-7.10.1016/0168-9002(96)00075-7
  12. 12. Dannefaer, S., Bretagnon, T., & Kerr, D. (1993). Vacancy-type defects in crystalline and amorphous SiO2. J. Appl. Phys., 74(2), 884–890. DOI: 10.1063/1.354882.10.1063/1.354882
  13. 13. Hassan, H. E., Sharshar, T., Hessien, M. M., & Hemeda, O. M. (2013). Effect of γ-rays irradiation on Mn-Ni ferrites: Structure, magnetic properties and positron annihilation studies. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 304, 72–79. DOI: 10.1016/j.nimb.2013.03.053.10.1016/j.nimb.2013.03.053
  14. 14. Chakrabarti, S., Chaudhuri, S., & Nambissan, P. M. G. (2005). Positron annihilation lifetime changes across the structural phase transition in nanocrystalline Fe2O3. Phys. Rev. B, 71, 064105. DOI: 10.1103/PhysRevB.71.064105.10.1103/PhysRevB.71.064105
  15. 15. Bandyopadhyay, S., Roy, A., Das, D., Ghugre, S. S., & Ghose, J. (2003). Investigation of nanocrystalline CoFe2O4 by positron annihilation lifetime spectroscopy. Philos. Mag., 83, 765–773. DOI: 10.1080/0141861021000042271.10.1080/0141861021000042271
  16. 16. Mitra, S., Mandal, K., Sinha, S., Nambissan, P. M. G., & Kumar, S. (2006). Size and temperature dependent cationic redistribution in NiFe2O4(SiO2) nanocomposites: positron annihilation and Mössbauer studies. J. Phys. D-Appl. Phys., 39, 4228–4235. DOI: 10.1088/0022-3727/39/19/016.10.1088/0022-3727/39/19/016
  17. 17. Chakraverty, S., Mitra, S., Mandal, K., Nambissan, P. M. G., & Chattopadhyay, S. (2005). Positron annihilation studies of some anomalous features of NiFe2O4 nanocrystals grown in SiO2. Phys. Rev. B, 71, 024115. DOI: 10.1103/PhysRevB.71.024115.10.1103/PhysRevB.71.024115
  18. 18. Wiertel, M., Surowiec, Z., Gac, W., & Budzyński, M. (2014). Positron annihilation in MnFe2O4/MCM-41 nanocomposite. Acta Phys. Pol. A, 125, 793–797. DOI: 10.12693/APhysPolA.125.793.10.12693/APhysPolA.125.793
  19. 19. Kobayashi, Y., Ito, K., Oka, T., & Hirata, K. (2007). Positronium chemistry in porous materials. Radiat. Phys. Chem., 76, 224–230. DOI: 10.1016/j.radphyschem.2006.03.042.10.1016/j.radphyschem.2006.03.042
  20. 20. Wiertel, M., Surowiec, Z., Budzyński, M., & Gac, W. (2013). Positron annihilation studies of mesoporous iron modified MCM-41 silica. Nukleonika, 58, 245–250.
  21. 21. Chuang, S. Y., & Tao, S. J. (1971). Study of various properties of silica gel by positron annihilation. J. Chem. Phys., 54, 4902–4907. DOI: 10.1063/1.1674769.10.1063/1.1674769
DOI: https://doi.org/10.1515/nuka-2015-0141 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 783 - 787
Submitted on: Jun 29, 2015
Accepted on: Aug 28, 2015
Published on: Dec 1, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Marek Wiertel, Zbigniew Surowiec, Mieczysław Budzyński, Wojciech Gac, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.