3. Jasińska, B., Kozioł, A. E., & Goworek, T. (1996). Ortho-positronium lifetimes in nonspherical voids. J. Radioanal. Nucl. Chem., 210(2), 617–623. DOI: 10.1007/BF02056403.10.1007/BF02056403
4. Jasińska, B., Kozioł, A. E., & Goworek, T. (1999). Void shapes and o-Ps lifetime in molecular crystals. Acta Phys. Pol. A, 95, 557–561.10.12693/APhysPolA.95.557
7. Kobayashi, Y., Zheng, W., Meyer, E. F., McGervey, J. D., Jamieson, A. M., & Simha, R. (1989). Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation. Macromolecules, 22(5), 2302–2306. DOI: 10.1021/ma00195a052.10.1021/ma00195a052
8. Dlubek, G., Pionteck, J., Sniegocka, M., Hassan, E. M., & Krause-Rehberg, R. (2007). Temperature and pressure dependence of the free volume in the perfluorinated polymer glass CYTOP: A positron lifetime and pressure-volume-temperature study. J. Polym. Sci. Pt. B-Pol. Phys., 45(18), 2519–2534. DOI: 10.1002/polb.21248.10.1002/polb.21248
10. Venkateswaran, K., Cheng, K. L., & Jean, Y. C. (1984). Application of positron annihilation to study the surface properties of porous resins. J. Phys. Chem., 88, 2465–2469. DOI: 10.1021/j150656a010.10.1021/j150656a010
11. Tydda, M., Jasińska, B., Kozioł, A. E., & Wawrzycka-Gorczyca, I. (2013). Modification of the crystallographic structure of olanzapine during solvation by PALS and X-ray diffraction methods. Mater. Sci. Forum, 733, 92–95.10.4028/www.scientific.net/MSF.733.92
13. Shukla, A., Peter, M., & Hoffmann, L. (1993). Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Dect. Assoc. Equip., 335, 310–317. DOI: 10.1016/0168-9002(93)90286-Q.10.1016/0168-9002(93)90286-Q
15. Gidley, D. W., Frieze, W. E., Dull, T. L., Yee, A. F., Ryan, E. T., & Ho, H. M. (1999). Positronium annihilation in mesoporous thin films. Phys. Rev. B, 60(8), 5157–5160. DOI: 10.1103/PhysRevB.60.R5157.10.1103/PhysRevB.60.R5157
16. Dlubek, G., Eichler, S., Hubner, Ch., & Nagel, Ch. (1999). Does the MELT program accurately reveal the lifetime distribution in polymers? Phys. Status Solidi A, 174, 313–325. DOI: 10.1002/(SICI)1521-396X(199908)174:2<;313::AIDPSSA313>3.3.CO;2-U.
17. Dlubek, G., Hubner, Ch., & Eichler, S. (1998). Do the CONTIN or the MELT programs accurately reveal the o-Ps lifetime distribution in polymers? Analysis of experimental lifetime spectra of amorphous polymers. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 142, 191–202. DOI: 10.1016/S0168-583X(98)00265-1.10.1016/S0168-583X(98)00265-1
18. Zgardzinska, B. (2015). The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chem. Phys. Lett., 62, 20–22. DOI: 10.1016/j.cplett.2015.01.021.10.1016/j.cplett.2015.01.021
19. Stepanov, S., & Byakov, V. (2003). Physical and radiation chemistry of positron and positronium. In Y. C. Jean, P. Mellon, & D. M. Schradder (Eds.), Principles and applications of positron and positronium chemistry (pp. 117–148). Singapore: World Scientific. DOI: 10.1142/9789812775610_0005.10.1142/9789812775610_0005
20. Hirata, K., Kobayashi, Y., & Ujihira, Y. (1996). Diffusion coefficients of positronium in amorphous polymers. J. Chem. Soc., Faraday Trans., 92, 985–988.10.1039/ft9969200985