Have a personal or library account? Click to login

Isotropic distributions in hcp crystals

Open Access
|Dec 2015

References

  1. 1. Houston, W. V. (1948). Normal vibrations of a crystal lattice. Rev. Mod. Phys., 20, 161–165.10.1103/RevModPhys.20.161
  2. 2. Mueller, F. M., & Priestley, M. G. (1966). Inversion of cubic de Haas-van Alphen Data, with an application to palladium. Phys. Rev., 148, 638–643.10.1103/PhysRev.148.638
  3. 3. Bhatia, A. B. (1955). Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev., 97, 363–371.10.1103/PhysRev.97.363
  4. 4. Betts, D. D., Bhatia, A. B., & Womann, M. (1956). Houston’s method and its application to the calculation of characteristic temperatures of cubic crystals. Phys. Rev., 104, 37–42.10.1103/PhysRev.104.37
  5. 5. Betts, D. D., Bhatia, A. B., & Horton, J. W. (1956). Debye characteristic temperatures of certain noncubic crystals. Phys. Rev., 104, 43–47.10.1103/PhysRev.104.43
  6. 6. Ghosh, G., Delsante, S., Borzone, G., Asta, M., & Ferro, R. (2006). Phase stability and cohesive properties of Ti-Zn intermetallics: First-principles calculations and experimental results. Acta Mater., 54, 4977–4997.10.1016/j.actamat.2006.04.038
  7. 7. Taylor, C. D., Lookman, T., & Scott, L. R. (2010). Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3. Acta Mater., 58, 1045–1055.10.1016/j.actamat.2009.10.021
  8. 8. Bansil, A. (1979). Coherent-potential and average-matrix approximations for disordered muffin-tin alloys. II. Application to realistic systems. Phys. Rev. B, 20, 4035–4043.10.1103/PhysRevB.20.4035
  9. 9. Prasad, R., & Bansil, A. (1980). Special directions for Brillouin-zone integration: Application to density of states calculations. Phys. Rev. B, 21, 496–503.10.1103/PhysRevB.21.496
  10. 10. Šob, M., Szuszkiewicz, S., & Szuszkiewicz, M. (1984). Polarized positron annihilation enhancement effects in ferromagnetic iron. Phys. Status Solidi B, 123, 649–652.10.1002/pssb.2221230230
  11. 11. Šob, M. (1985). Electronic structure and positron annihilation in alkali metals: Isolation of ionic core contribution and valence high-momentum components. Solid State Commun., 53, 249–253.10.1016/0038-1098(85)90045-6
  12. 12. Aguiar, J. C., Mitnik, D., & DiRocco, H. O. (2015). Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids, 83, 64–69.10.1016/j.jpcs.2015.03.023
  13. 13. Ahuja, B. L., Sharma, M. D., Sharma, B. K., Hamouda, S., & Cooper, M. J. (1994). Compton profile of polycrystalline yttrium. Phys. Scripta, 50, 301–304.10.1088/0031-8949/50/3/015
  14. 14. Ahuja, B. L., Sharma, M., & Bross, H. (2007). Compton profile study of gold: Theory and experiment. Phys. Status Solidi B, 244, 642–649.10.1002/pssb.200642143
  15. 15. Ahuja, B. L., Mohammad, F. M., Mohammed, S. F., Sahariya, J., Mund, H. S., & Heda, N. L. (2015). Compton scattering and charge transfer in Er substituted DyAl2. J. Phys. Chem., 77, 50–55.10.1016/j.jpcs.2014.09.010
  16. 16. Bross, H. (2006). Special directions for surface integrals in cubic lattices with application to the evaluation of the Compton profile of copper. Phys. Status Solidi B, 243, 653–665.10.1002/pssb.200541339
  17. 17. Bross, H. (2004). The local density approximation limit of the momentum density and the Compton profiles of Al. J. Phys.-Condens. Mat., 16, 7363–7378.10.1088/0953-8984/16/41/016
  18. 18. Bross, H. (2005). Electronic structure of Li with emphasis on the momentum density and the Compton profile. Phys. Rev. B, 72, 115109(14 pp.).10.1103/PhysRevB.72.115109
  19. 19. Chu-Nan, Chang, Yu-Mei, Shu, Chuhn-Chuh, Chen, & Huey-Fen, Liu. (1993). The Compton profiles of tantalum. J. Phys.-Condens. Mat., 5, 5371–5376.10.1088/0953-8984/5/30/016
  20. 20. Joshi, K. B., Pandya, R. K., Kothari, R. K., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. Phys. Status Solidi B, 246, 1268–1274.10.1002/pssb.200844392
  21. 21. Ohata, T., Itou, M., Matsumoto, I., Sakurai, Y., Kawata, H., Shiotani, N., Kaprzyk, S., Mijnarends, P. E., & Bansil, A. (2000). High-resolution Compton scattering study of the electron momentum density in Al. Phys. Rev. B, 62, 16528–16535.10.1103/PhysRevB.62.16528
  22. 22. Sharma, G., Joshi, K. B., Mishra, M. C., Kothari, R. K., Sharma, Y. C., Vyas, V., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. J. Alloys Compd., 485, 682–686.10.1016/j.jallcom.2009.06.043
  23. 23. Kawasuso, A., Maekawa, M., Fukaya, Y., Yabuuchi, A., & Mochizuki, I. (2011). Polarized positron annihilation measurements of polycrystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B, 83, 0406(R).10.1103/PhysRevB.83.100406
  24. 24. Kontrym-Sznajd, G. (2013). Utilization of symmetry of solids in experimental investigations. Nukleonika, 58, 205–208.
  25. 25. Waspe, R. L., & West, R. N. (1982). The Fermi surface of gadolinium. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 328–330). Amsterdam: North-Holland Publ. Co.
  26. 26. Kontrym-Sznajd, G., & Samsel-Czekała, M. (2012). Special directions in momentum space. II. Hexagonal, tetragonal and trigonal symmetries. J. Appl. Crystal., 45, 1254–1260.10.1107/S0021889812041283
  27. 27. Kontrym-Sznajd, G., Samsel-Czekała, M., Pietraszko, A., Sormann, H., Manninen, S., Huotari, S., Hämäläinen, K., Laukkanen, J., West, R. N., & Schülke, W. (2002). Electron momentum density in yttrium. Phys. Rev. B, 66, 155110(10 pp).10.1103/PhysRevB.66.155110
  28. 28. Walters, P. A., Mayers, J., & West, R. N. (1982). Two-dimensional electron-positron momentum densities in the hcp metals: Mg, Zn, and Cd. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 334–336). Amsterdam: North-Holland Publ. Co.
  29. 29. Stewart, A. T. (1957). Momentum distribution of metallic electrons by positron annihilation. Can. J. Phys., 35, 168–183.10.1139/p57-020
  30. 30. Lam, L., & Platzman, P. M. (1974). Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism. Phys. Rev. B, 9, 5122–5127.10.1103/PhysRevB.9.5122
  31. 31. Kubo, Y. (2005). Electron correlation effects on Compton profiles of copper in the GW approximation. J. Phys. Chem. Solids, 66, 2202–2206.10.1016/j.jpcs.2005.09.043
  32. 32. Bansil, A. (1975). Special directions in the Brillouin zone. Solid State Commun., 16, 885–889.10.1016/0038-1098(75)90886-8
  33. 33. Fehlner, W. R., Nickerson, S. B., & Vosko, S. H. (1976). Cubic harmonic expansions using Gauss integration formulas. Solid State Commun., 19, 83–86.10.1016/0038-1098(76)91735-X
  34. 34. Fehlner, W. R., & Vosko, S. H. (1976). A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys., 54, 215–216.10.1139/p76-256
  35. 35. Wasserman, E., Stixrude, L., & Cohen, R. E. (1996). Thermal properties of iron at high pressures and temperatures. Phys. Rev. B, 53, 8296–8309.10.1103/PhysRevB.53.8296
DOI: https://doi.org/10.1515/nuka-2015-0133 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 741 - 744
Submitted on: Jun 18, 2015
Accepted on: Aug 20, 2015
Published on: Dec 1, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Grażyna Kontrym-Sznajd, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.