2. Mueller, F. M., & Priestley, M. G. (1966). Inversion of cubic de Haas-van Alphen Data, with an application to palladium. Phys. Rev., 148, 638–643.10.1103/PhysRev.148.638
3. Bhatia, A. B. (1955). Vibration spectra and specific heats of cubic metals. I. Theory and application to sodium. Phys. Rev., 97, 363–371.10.1103/PhysRev.97.363
4. Betts, D. D., Bhatia, A. B., & Womann, M. (1956). Houston’s method and its application to the calculation of characteristic temperatures of cubic crystals. Phys. Rev., 104, 37–42.10.1103/PhysRev.104.37
5. Betts, D. D., Bhatia, A. B., & Horton, J. W. (1956). Debye characteristic temperatures of certain noncubic crystals. Phys. Rev., 104, 43–47.10.1103/PhysRev.104.43
7. Taylor, C. D., Lookman, T., & Scott, L. R. (2010). Ab initio calculations of the uranium-hydrogen system: Thermodynamics, hydrogen saturation of a-U and phase-transformation to UH3. Acta Mater., 58, 1045–1055.10.1016/j.actamat.2009.10.021
8. Bansil, A. (1979). Coherent-potential and average-matrix approximations for disordered muffin-tin alloys. II. Application to realistic systems. Phys. Rev. B, 20, 4035–4043.10.1103/PhysRevB.20.4035
9. Prasad, R., & Bansil, A. (1980). Special directions for Brillouin-zone integration: Application to density of states calculations. Phys. Rev. B, 21, 496–503.10.1103/PhysRevB.21.496
11. Šob, M. (1985). Electronic structure and positron annihilation in alkali metals: Isolation of ionic core contribution and valence high-momentum components. Solid State Commun., 53, 249–253.10.1016/0038-1098(85)90045-6
12. Aguiar, J. C., Mitnik, D., & DiRocco, H. O. (2015). Electron momentum density and Compton profile by a semi-empirical approach. J. Phys. Chem. Solids, 83, 64–69.10.1016/j.jpcs.2015.03.023
13. Ahuja, B. L., Sharma, M. D., Sharma, B. K., Hamouda, S., & Cooper, M. J. (1994). Compton profile of polycrystalline yttrium. Phys. Scripta, 50, 301–304.10.1088/0031-8949/50/3/015
14. Ahuja, B. L., Sharma, M., & Bross, H. (2007). Compton profile study of gold: Theory and experiment. Phys. Status Solidi B, 244, 642–649.10.1002/pssb.200642143
15. Ahuja, B. L., Mohammad, F. M., Mohammed, S. F., Sahariya, J., Mund, H. S., & Heda, N. L. (2015). Compton scattering and charge transfer in Er substituted DyAl2. J. Phys. Chem., 77, 50–55.10.1016/j.jpcs.2014.09.010
16. Bross, H. (2006). Special directions for surface integrals in cubic lattices with application to the evaluation of the Compton profile of copper. Phys. Status Solidi B, 243, 653–665.10.1002/pssb.200541339
17. Bross, H. (2004). The local density approximation limit of the momentum density and the Compton profiles of Al. J. Phys.-Condens. Mat., 16, 7363–7378.10.1088/0953-8984/16/41/016
18. Bross, H. (2005). Electronic structure of Li with emphasis on the momentum density and the Compton profile. Phys. Rev. B, 72, 115109(14 pp.).10.1103/PhysRevB.72.115109
20. Joshi, K. B., Pandya, R. K., Kothari, R. K., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. Phys. Status Solidi B, 246, 1268–1274.10.1002/pssb.200844392
21. Ohata, T., Itou, M., Matsumoto, I., Sakurai, Y., Kawata, H., Shiotani, N., Kaprzyk, S., Mijnarends, P. E., & Bansil, A. (2000). High-resolution Compton scattering study of the electron momentum density in Al. Phys. Rev. B, 62, 16528–16535.10.1103/PhysRevB.62.16528
22. Sharma, G., Joshi, K. B., Mishra, M. C., Kothari, R. K., Sharma, Y. C., Vyas, V., & Sharma, B. K. (2009). Electronic structure of AlAs: A Compton profile study. J. Alloys Compd., 485, 682–686.10.1016/j.jallcom.2009.06.043
23. Kawasuso, A., Maekawa, M., Fukaya, Y., Yabuuchi, A., & Mochizuki, I. (2011). Polarized positron annihilation measurements of polycrystalline Fe, Co, Ni, and Gd based on Doppler broadening of annihilation radiation. Phys. Rev. B, 83, 0406(R).10.1103/PhysRevB.83.100406
25. Waspe, R. L., & West, R. N. (1982). The Fermi surface of gadolinium. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 328–330). Amsterdam: North-Holland Publ. Co.
26. Kontrym-Sznajd, G., & Samsel-Czekała, M. (2012). Special directions in momentum space. II. Hexagonal, tetragonal and trigonal symmetries. J. Appl. Crystal., 45, 1254–1260.10.1107/S0021889812041283
27. Kontrym-Sznajd, G., Samsel-Czekała, M., Pietraszko, A., Sormann, H., Manninen, S., Huotari, S., Hämäläinen, K., Laukkanen, J., West, R. N., & Schülke, W. (2002). Electron momentum density in yttrium. Phys. Rev. B, 66, 155110(10 pp).10.1103/PhysRevB.66.155110
28. Walters, P. A., Mayers, J., & West, R. N. (1982). Two-dimensional electron-positron momentum densities in the hcp metals: Mg, Zn, and Cd. In P. G. Coleman, S. C. Sharma, & L. M. Diana (Eds.), Positron annihilation (pp. 334–336). Amsterdam: North-Holland Publ. Co.
30. Lam, L., & Platzman, P. M. (1974). Momentum density and Compton profile of the inhomogeneous interacting electronic system. I. Formalism. Phys. Rev. B, 9, 5122–5127.10.1103/PhysRevB.9.5122
31. Kubo, Y. (2005). Electron correlation effects on Compton profiles of copper in the GW approximation. J. Phys. Chem. Solids, 66, 2202–2206.10.1016/j.jpcs.2005.09.043
33. Fehlner, W. R., Nickerson, S. B., & Vosko, S. H. (1976). Cubic harmonic expansions using Gauss integration formulas. Solid State Commun., 19, 83–86.10.1016/0038-1098(76)91735-X
34. Fehlner, W. R., & Vosko, S. H. (1976). A product representation for cubic harmonics and special directions for the determination of the Fermi surface and related properties. Can. J. Phys., 54, 215–216.10.1139/p76-256
35. Wasserman, E., Stixrude, L., & Cohen, R. E. (1996). Thermal properties of iron at high pressures and temperatures. Phys. Rev. B, 53, 8296–8309.10.1103/PhysRevB.53.8296