Have a personal or library account? Click to login

Toward a European Network of Positron Laboratories

Open Access
|Dec 2015

References

  1. 1. Dupasquier, A., Mills Jr, A. P., & Brusa, R. (Eds.). (2010). Physics with many positrons. 174th Proceedings of the International School of Physics “Enrico Fermi”. Amsterdam: IOS Press.
  2. 2. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Scarel, G., & Fanciulli, M. (2007). Innovative dielectrics for semiconductor technology. Radiat. Phys. Chem., 76(2), 189–194. DOI: 10.1016/j.radphyschem.2006.03.033.10.1016/j.radphyschem.2006.03.033
  3. 3. Karwasz, G. P., Zecca, A., Brusa, R. S., & Pliszka, D. (2004). Application of positron annihilation techniques for semiconductor studies. J. Alloy. Compd., 382(1/2), 244–251. DOI: 10.1016/j.jallcom.2004.05.037.10.1016/j.jallcom.2004.05.037
  4. 4. Dupasquier, A., Kögel, G., & Somoza, A. (2004). Studies of light alloys by positron annihilation techniques. Acta Mater., 52, 4707. DOI: 10.1016/j.actamat.2004.07.004.10.1016/j.actamat.2004.07.004
  5. 5. Goworek, T., Zaleski, R., & Wawryszczuk, J. (2004). Observation of intramolecular defects in n-alkanes C25H52-C29H60 by the positron annihilation method. Chem. Phys. Lett., 394, 90–92. DOI: 10.1016/j.cplett.2004.06.11610.1016/j.cplett.2004.06.116
  6. 6. Śniegocka, M., Jasińska, B., Goworek, T., & Zaleski, R. (2006). Temperature dependence of o-Ps lifetime in some porous media. Deviations from ETE model. Chem. Phys. Lett., 430, 351–354. DOI: 10.1016/j.cplett.2006.09.001.10.1016/j.cplett.2006.09.001
  7. 7. Hakala, M., Puska, M. J., & Nieminen, R. M. (1998). Momentum distributions of electron-positron pairs annihilating at vacancy clusters in Si. Phys. Rev. B, 57, 7621. DOI: 10.1103/PhysRevB.57.7621.10.1103/PhysRevB.57.7621
  8. 8. Brusa, R. S., Deng, W., Karwasz, G. P., & Zecca, A. (2002). Doppler-broadening measurements of positron annihilation with high-momentum electrons in pure metals. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 194, 519–531. DOI: 10.1016/S0168-583X(02)00953-9.10.1016/S0168-583X(02)00953-9
  9. 9. Karbowski, A., Fidelus, J., & Karwasz, G. (2011). Testing an Ortec Lifetime System. Mater. Sci. Forum, 666, 155–159. DOI: 10.4028/www.scientific.net/MSF.666.155.
  10. 10. Karbowski, A., Fisz, J. J., Karwasz, G. P., Kansy, J., & Brusa, R. S. (2008). Genetic algorithms for positron lifetime data. Acta Phys. Pol. A, 113, 1365–1372.10.12693/APhysPolA.113.1365
  11. 11. Brusa, R., Deng, W., Karwasz, G. P., Zecca, A., & Pliszka, D. (2001). Positron annihilation study of vacancy-like defects related to oxygen precipitates in Czochralski-type Si. Appl. Phys. Lett., 79, 1492. DOI: 10.1063/1.1401782.10.1063/1.1401782
  12. 12. Saarinen, K., Nissilä, J., Kauppinen, H., Hakala, M., Puska, M. J., Hautojärvi, P., & Corbel, C. (1999). Identification of vacancy-impurity complexes in highly n-type Si. Phys. Rev. Lett., 82, 1883–1886. DOI: 10.1103/PhysRevLett.82.1883.10.1103/PhysRevLett.82.1883
  13. 13. Coleman, P. G. (Ed.). (2000), Positron beams and their applications. Singapore: World Scientific.10.1142/3719
  14. 14. Brusa, R. S., Karwasz, G. P., Bettonte, M., & Zecca, A. (1997). A high performance electrostatic positron beam. Appl. Surf. Sci., 116, 59–62. DOI: 10.1016/S0169-4332(96)01028-8.10.1016/S0169-4332(96)01028-8
  15. 15. Zecca, A., Bettonte, M., Paridaens, J., Karwasz, G. P., & Brusa, R. S. (1998). A new electrostatic positron beam for surface studies. Meas. Sci. Technol., 9, 409–416. DOI: 10.1088/0957-0233/9/3/014.10.1088/0957-0233/9/3/014
  16. 16. Zecca, A., Brusa, R. S., Duarte-Naia, M., Karwasz, G. P., Paridaens, J., Piazza, A., Kögel, G., Sperr, P., Britton, D. T., Uhlmann, K., Willutzki, P., & Triftshauser, W. (1995) A pulsed positron microbeam. Europhys. Lett., 29, 617–622. DOI: 10.1209/0295-5075/29/8/005.10.1209/0295-5075/29/8/005
  17. 17. Hamada, E., Oshima, N., Suzuki, T., Kobayashi, H., Kondo, K., Kanazawa, I., & Ito, Y. (2000). New system for a pulsed slow-positron beam using a radioisotope. Radiat. Phys. Chem., 58, 771–775. DOI: 10.1016/S0969-806X(00)00257-7.10.1016/S0969-806X(00)00257-7
  18. 18. Hugenschmidt, C., Piochacz, C., Reiner, M., & Schrekkenbach, K. (2012). The NEPOMUC upgrade and advanced positron beam experiments. New J. Phys., 14, 055027. DOI: 10.1088/1367-2630/14/5/055027.10.1088/1367-2630/14/5/055027
  19. 19. Oshima, N., Suzuki, R., Ohdaira, R., Kinomura, A., Narumi, T., Uedono, A., & Fujinami, M. (2008). Brightness enhancement method for a high-intensity positron beam produced by an electron accelerator. J. Appl. Phys., 103, 094916. DOI: 10.1063/1.2919783.10.1063/1.2919783
  20. 20. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Laidani, N., Bartali, R., & Anderle, M. (2005). Amorphous carbon film growth on Si: Correlation between stress and generation of defects into the substrate. Appl. Phys. Lett., 86, 221906. DOI: 10.1063/1.1940738.10.1063/1.1940738
  21. 21. Ferragut, R., Calloni, A., Dupasquier, A., Consolati, G., Quasso, F., Giammarchi, M. G., Trezzi, D., Egger, W., Ravelli, L., Petkov, M. P., Jones, S. M., Wang, B., Yaghi, O. M., Jasińska, B., Chiodini, N., & Paleari, A. (2010). Positronium formation in porous materials for antihydrogen production. J. Phys. Conf. Ser., 225, 012007. DOI: 10.1088/1742-6596/225/1/012007.10.1088/1742-6596/225/1/012007
  22. 22. Consolati, G. (2002). Positronium trapping in small voids: Influence of their shape on positron annihilation results. J. Chem. Phys., 117, 7279. DOI: 10.1063/1.1507578.10.1063/1.1507578
  23. 23. Jasińska, B., & Dawidowicz, A. L. (2003). Pore size determination in Vycor glass. Radiat. Phys. Chem., 68(3/4), 531–534. DOI: 10.1016/S0969-806X(03)00224-X.10.1016/S0969-806X(03)00224-X
  24. 24. Jasińska, B., Dawidowicz, A. L., Goworek, T., & Wawryszczuk, J. (2003). Pore size determination by positron annihilation lifetime spectroscopy. Opt. Appl., 33(1), 7–12.
  25. 25. Gorgol, M., Jasińska, B., & Reisfeld, R. (2015). PALS investigations of matrix Vycor glass and doped by molecules of luminescent dye and silver nanoparticles. Discrepancies from the ETE model. Nukleonika, 60(4), 717–720.
  26. 26. Macchi, C., Mariotto, G., Karwasz, G. P., Zecca, A., Bettonte, M., & Brusa, R. S. (2004). Depth profiled porosity and micro-structure evolution studied by Positron Annihilation and Raman spectroscopy in SiOCH low-κ films. Mater. Sci. Semicond. Proc., 7, 289–294. DOI: 10.1016/j.mssp.2004.09.093.10.1016/j.mssp.2004.09.093
  27. 27. Brusa, R. S., Spagolla, M., Karwasz, G. P., Zecca, A., Ottaviani, G., Corni, F., & Carollo, E. (2004). Porosity in low dielectric constant SiOCH films depth profiled by positron annihilation spectroscopy. J. Appl. Phys., 95, 2348–2354. DOI: 10.1063/1.1644925.10.1063/1.1644925
  28. 28. Brusa, R. S., Karwasz, G. P., Tiengo, N., Zecca, A., Corni, F., Tonini, R., & Ottaviani, G. (2000). Formation of vacancy clusters and cavities in He-implanted silicon studied by slow-positron annihilation spectroscopy. Phys. Rev. B, 61, 10154–10166. DOI: 10.1103/PhysRevB.61.10154.10.1103/PhysRevB.61.10154
  29. 29. Brusa, R. S., Macchi, C., Mariazzi, S., Karwasz, G. P., Egger, W., Sperr, P., & Kögel, G. (2006). Decoration of buried surfaces in Si detected by positron annihilation spectroscopy. Appl. Phys. Lett., 88, 011920. DOI: 10.1063/1.2162691.10.1063/1.2162691
  30. 30. Song, M. -Y., Yoon, J. -S., Cho, H., Itikawa, Y., Karwasz, G. P., Kokoouline, V., Nakamura, Y., & Tennyson, J. (2015). Cross sections for electron collisions with methane. J. Phys. Chem. Ref. Data, 44, 023101. DOI: 10.1063/1.4918630.10.1063/1.4918630
  31. 31. Yu-Wei, You, Dongdong, Li, Xiang-Shan, Kong, Xuebang, Wu, Liu, C. S., Fang, Q. F., Pan, B. C., Chen, J. L., & Luo, G. -N. (2014). Clustering of H and He, and their effects on vacancy evolution in tungsten in a fusion environment. Nucl. Fusion, 54, 103007. DOI: 10.1088/0029-5515/54/10/103007.10.1088/0029-5515/54/10/103007
  32. 32. Ogorodnikova, O. V., Schwarz-Selinger, T., Sugiyama, K., & Alimov, V. Kh. (2011). Deuterium retention in tungsten exposed to low-energy pure and helium-seeded deuterium plasmas. J. Appl. Phys., 109, 013309. DOI: 10.1063/1.3505754.10.1063/1.3505754
  33. 33. Tyburska-Püschel, B., Alimov, V. Kh, ’t Hoen, M. H. J., Zgardzinska, B., Dorner, J., & Hatano, Y. (2013). Deuterium retention in tungsten damaged with MeV-range W ions at various temperatures and then exposed to D2 gas. In 14th International Conference on Plasma-Facing Materials and Components for Fusion Applications, May 13–17, 2013. Forschungszentrum Juelich, Germany. http://www.fz-juelich.de/conferences/PFMC-14/EN/_SharedDocs/Downloads/EN/pfmc14_book_of_abstracts.html?nn=1264182.
  34. 34. Ogorodnikova, O. V., & Sugiyama, K. (2013). Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer. J. Nucl. Mater., 442, 518–527. DOI: 10.1016/j.jnucmat.2013.07.024.10.1016/j.jnucmat.2013.07.024
  35. 35. Ogorodnikova, O. V., & Gann, V. (2015). Simulation of neutron-induced damage in tungsten by irradiation with energetic self-ions. J. Nucl. Mater., 460, 60–71. DOI: 10.1016/j.jnucmat.2015.02.004.10.1016/j.jnucmat.2015.02.004
  36. 36. Ogorodnikova, O. V., Sugiyama, K., Barthe, M. -F., Sibid, M., Ciupiński, Ł., & Płociński, T. (2013). Saturation of deuterium trapping at radiation-induced damage in self-ion irradiated tungsten. In 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China. http://edoc.mpg.de/634511.
  37. 37. Egger, W. (2010). Pulsed low-energy positron beams in materials sciences. In R. S. Brusa, A. Dupasquier, & A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 419–449). Amsterdam: North-Holland Publ. Co.
  38. 38. Hugenschmidt, C. (2010). Positron sources and positron beams. In R. S. Brusa, A. Dupasquier, & A. P. Mills Jr. (Eds.), Physics with many positrons (pp. 399–417). Amsterdam: North-Holland Publ. Co.
  39. 39. Brandt, W., Berko, S., & Walker, W. W. (1960). Positronium decay in molecular substances. Phys. Rev., 120, 1289–1295.10.1103/PhysRev.120.1289
  40. 40. Uhlmann, K., Triftshäuser, W., Kögel, G., Sperr, P., Britton, D. T., Zecca, A., Brusa, R. S., & Karwasz, G. P. (1995). A concept of a scanning positron microscope. Fresenius J. Anal. Chem., 353, 594–597. DOI: 10.1007/BF00321331.10.1007/BF00321331
  41. 41. Zecca, A., & Karwasz, G. (2001). Positrons go into detail. Phys. World, 11, 21.10.1088/2058-7058/14/11/26
  42. 42. Kögel, G., Egger, W., Rödling, S., & Gudladt, H. J. (2004). Investigation of fatigue cracks in an Al-based alloy by means of pulsed positron (micro)beams. Mater. Sci. Forum, 445/446,126–128. DOI: 10.4028/www.scientific.net/MSF.445-446.126.
  43. 43. Uedono, A., Kurihara, K., Yoshihara, N., Nagao, S., & Ishibashi, S. (2015). Vacancies in InxGa1−xN/GaN multiple quantum wells fabricated on m-plane GaN probed by a monoenergetic positron beam. Appl. Phys. Express, 8, 051002. DOI: 10.7567/APEX.8.051002.10.7567/APEX.8.051002
  44. 44. Makochekanwa, C., Machacek, J. R., Jones, A. C. L., Caradonna, P., Slaughter, D. S., McEachran, R. P., Sullivan, J. P., Buckman, S. J., Bellm, S. M., Lohmann, B., Fursa, D. V., Bray, I., Mueller, D. W., Stauffer, A. D., & Hoshino, M. (2011). Low-energy positron interactions with krypton. Phys. Rev. A, 83, 032721. DOI: 10.1103/PhysRevA.83.032721.10.1103/PhysRevA.83.032721
  45. 45. Pelli, A., Laakso, A., Rytsölä, K., & Saarinen, K. (2006). The design of the main accelerator for a pulsed positron beam. Appl. Surf. Sci., 252, 3143–3147. DOI: 10.1016/j.apsusc.2005.08.054.10.1016/j.apsusc.2005.08.054
  46. 46. Wagner, A., Anwand, W., Butterling, M., Cowan, T. E., Fiedler, F., Fritz, F., Kempe, M., & Krause-Rehberg, R. (2015). Positron-annihilation lifetime spectroscopy using electron Bremsstrahlung. J. Phys. Conf. Ser., 618, 012042. DOI: 10.1088/1742-6596/618/1/012042.10.1088/1742-6596/618/1/012042
  47. 47. Köver, A., Williams, A. I., Murtag, D. J., Fayer, S. E., & Laricchia, G. (2014). An electrostatic brightness-enhanced timed positron beam for atomic collision experiments. Meas. Sci. Technol., 25, 075013. DOI: 10.1088/0957-0233/25/7/075013.10.1088/0957-0233/25/7/075013
  48. 48. Schut, H., Van Veen, A., de Roode, J., & Labohm, F. (2004). Long term performance of the reactor based positron beam POSH. Mater. Sci. Forum, 445/446, 507–509.10.4028/www.scientific.net/MSF.445-446.507
  49. 49. Desgardin, P., Liszkay, L., Barthe, M. F., Henry, L., Briaud, J., Saillard, M., Lepolotec, L., Corbel, C., Blondiaux, G., Colder, A., Marie, P., & Levalois, M. (2001). Slow positron beam facility in Orleans. Mater. Sci. Forum, 363, 523–525.10.4028/www.scientific.net/MSF.363-365.523
DOI: https://doi.org/10.1515/nuka-2015-0132 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 733 - 739
Submitted on: Aug 4, 2015
Accepted on: Aug 21, 2015
Published on: Dec 1, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Grzegorz P. Karwasz, Roberto S. Brusa, Werner Egger, Olga V. Ogorodnikova, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.