Have a personal or library account? Click to login

Slow positron beam at the JINR, Dubna

Open Access
|Dec 2015

References

  1. 1. Sidorin, A., Meshkov, I., Akhmanova, E., Eseev, M., Kobets, A., Lokhmatov, V., Pavlov, V., Rudakov, A., & Yakovenko, S. (2013). The LEPTA facility for fundamental studies of positronium physics and positron spectroscopy. Mater. Sci. Forum, 733, 291–296. DOI: 10.4028/www.scientific.net/MSF.733.291.
  2. 2. Murphy, T. J., & Surko, C. M. (1992). Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules. Phys. Rev. A, 46, 5696–5705. DOI: 10.1103/PhysRevA.46.5696.10.1103/PhysRevA.46.5696
  3. 3. Puska, M. J., & Nieminen, R. M. (1994). Theory of positrons in solids and on solid surfaces. Rev. Mod. Phys., 66, 841–899. DOI: 10.1103/RevMod-Phys.66.841.
  4. 4. Krause-Rehberg, R., & Leipner, S. H. (1999). Positron annihilation in semiconductors: Defect studies. Berlin: Springer.10.1007/978-3-662-03893-2
  5. 5. Dryzek, J. (2002). The solution of the time dependent positron diffusion equation valid for pulsed beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 196, 186–193. DOI: 10.1016/S0168-583X(02)01253-3.10.1016/S0168-583X(02)01253-3
  6. 6. Dryzek, J., & Horodek, P. (2008). GEANT4 simulation of slow positron beam implantation profiles. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 266(18), 4000–4009. DOI: 10.1016/j.nimb.2008.06.033.10.1016/j.nimb.2008.06.033
  7. 7. Schultz, P. J., & Lynn, K. G. (1988). Interaction of positron beams with surfaces, thin films and interfaces. Rev. Mod. Phys., 60, 701–779. DOI: 10.1103/RevModPhys.60.701.10.1103/RevModPhys.60.701
  8. 8. Iwai, T., Schut, H., Ito, Y., & Koshimizu, M. (2004). Vacancy-type defect production in iron under ion beam irradiation investigated with positron beam Doppler broadening technique. J. Nucl. Mater., 329/333, 963–966. DOI: 10.1016/j.jnucmat.2004.04.064.10.1016/j.jnucmat.2004.04.064
  9. 9. He, C. W., Dawi, K., Platteau, C., Barthe, M. F., Desgardin, P., & Akhmadaliev, S. (2014). Vacancy type defect formation in irradiated α-iron investigated by positron beam Doppler broadening technique. J. Phys. Conf. Ser., 505, 012018. DOI: 10.1088/1742-6596/505/1/012018.10.1088/1742-6596/505/1/012018
  10. 10. Van Veen, A., Schut, H., Clement, M., Kruseman, A., Ijpma, M. R., & De Nijs, J. M. M. (1995). VEPFIT applied to depth profiling problems. Appl. Surf. Sci., 85, 216–224. DOI: 10.1016/0169-4332(94)00334-3.10.1016/0169-4332(94)00334-3
  11. 11. Paulin, R., Ripon, R., & Brandt, W. (1974). Diffusion constant and surface states of positrons in metals. Appl. Phys., 4, 343–347. DOI: 10.1007/BF00928390.10.1007/BF00928390
  12. 12. Lukáč, F., Čižek, J., Procházka, I., Jirásková, Y., Janičkovič, D., Anwand, W., & Brauer, G. (2013). Vacancy-induced hardening in Fe-Al alloys. J. Phys. Conf. Ser., 443, 012025. DOI: 10.1088/1742-6596/443/1/012025.10.1088/1742-6596/443/1/012025
DOI: https://doi.org/10.1515/nuka-2015-0130 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 725 - 728
Submitted on: Jun 19, 2015
Accepted on: Aug 31, 2015
Published on: Dec 1, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Paweł Horodek, Andrey G. Kobets, Igor N. Meshkov, Alexey A. Sidorin, Oleg S. Orlov, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.