3. Horodek, P., Dryzek, J., & Wróbel, M. (2012). Positron annihilation study of defects induced by various cutting methods in stainless steel grade 304. Tribol. Lett., 45, 341–347. DOI: 10.1007/s11249-011-9890-7.10.1007/s11249-011-9890-7
4. Dryzek, E. (2003). Defect depth profiling after sphere indentation and blasting in aluminium and aluminium alloy detected by positron annihilation. J. Mater. Sci., 38, 3755–3763. DOI: 10.1023/A:1025976031584.10.1023/A:1025976031584
5. Sidorin, A., Meshkov, I., Akhmanova, E., Eseev, M., Kobets, A., Lokhmatov, V., Pavlov, V., Rudakov, A., & Yakovenko, S. (2013). The LEPTA facility for fundamental studies of positronium physics and positron spectroscopy. Mater. Sci. Forum, 733, 291–296. DOI: 10.4028/www.scientific.net/MSF.733.291.
7. Van Veen, A., Schut, H., Clement, M., Kruseman, A., Ijpma, M. R., & De Nijs, J. M. M. (1995). VEPFIT applied to depth profiling problems. Appl. Surf. Sci., 85, 216–224. DOI: 10.1016/0169-4332(94)00334-3.10.1016/0169-4332(94)00334-3
9. Wu, Y. C., & Jean, Y. C. (2007). Hydrogen-damaged defects near the surface in heavily deformed iron and steels investigated by slow positron annihilation spectroscopy. Phys. Status Solidi C, 4, 3506–3509. DOI: 10.1002/pssc.200675826.10.1002/pssc.200675826