Have a personal or library account? Click to login

TS-BTPhen as a promising hydrophilic complexing agent for selective Am(III) separation by solvent extraction

Open Access
|Dec 2015

Abstract

The novel hydrophilic back-extraction agent TS-BTPhen (3,3ʹ,3ʺ,3ʹʺ-[3-(1,10-phenanthroline-2,9-diyl)-1,2,4-triazine-5,5,6,6-tetrayl]tetrabenzenesulfonic acid) was tested for its selectivity towards Am(III) over Cm(III) and Eu(III) with a TODGA (N,N,Nʹ,Nʹ-tetraoctyldiglycolamide) based solvent. Batch experiments were carried out using TS-BTPhen dissolved in aqueous nitric acid solution with tracers of 152Eu, 241Am and 244Cm. A significant increase of the separation factor for Cm over Am from SFCm/Am = 1.6 up to SFCm/Am = 3.3 was observed compared to the use of a TODGA-nitric acid system alone. Furthermore, stripping was possible at high nitric acid concentrations (0.6-0.7 mol/L) resulting in a low sensitivity to acidity changes. The influence of the TS-BTPhen concentration was analyzed. A slope of -2 was expected taking into account literature stoichiometries of the lipophilic analogue CyMe4BTPhen. However, a slope of -1 was found. Batch stripping kinetics showed fast kinetics for the trivalent actinides. As an alternative organic ligand the methylated TODGA derivate Me-TODGA (2-methyl-N,N,Nʹ,Nʹ-tetraoctyldiglycolamide) was tested in combination with the hydrophilic TS-BTPhen. The Am(III) separation was achieved at even higher nitric acid concentrations compared to TODGA.

DOI: https://doi.org/10.1515/nuka-2015-0120 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 815 - 820
Submitted on: Jun 19, 2015
Accepted on: Aug 21, 2015
Published on: Dec 30, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Peter Kaufholz, Fabian Sadowski, Andreas Wilden, Giuseppe Modolo, Frank W. Lewis, Andrew W. Smith, Laurence M. Harwood, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.