Have a personal or library account? Click to login

The effect of SO3-Ph-BTBP on stainless steel corrosion in nitric acid

Open Access
|Dec 2015

References

  1. 1. Bell, K., Carpentier, C., Carrott, M. J., Geist, A., Gregson, C., Hères, X., Magnusson, D., Malmbeck, R., McLachlan, F., Modolo, G., Mullich, U., Sypula, M., Taylor, R. J., & Wilden, A. (2012). Progress towards the development of a new GANEX process. Procedia Chem., 7, 392-397.10.1016/j.proche.2012.10.061
  2. 2. Carrott, M. J., Bell, K., Brown, J., Geist, A., Gregson, C., Hères, X., Maher, C., Malmbeck, R., Mason, C., Modolo, G., Mullich, U., Sarsfield, M., Wilden, A., & Taylor, R. J. (2014). Development of a new fl owsheet for co-separating the transuranic actinides: The “EURO-GANEX” process. Solvent Extr. Ion Exch., 32(5), 447-467.10.1080/07366299.2014.896580
  3. 3. McKibben, J. M. (1984). Chemistry of the PUREX process. Radiochim. Acta, 36, 3-15.10.1524/ract.1984.36.12.3
  4. 4. Tkac, P., Precek, M., & Paulenova, A. (2009). Redox reactions of Pu(IV) and Pu(III) in the presence of acetohydroxamic acid in HNO3 solutions. Inorg. Chem., 48, 11935-11944.10.1021/ic901081j
  5. 5. Taylor, R. J., May, I., Wallwork, A. L., Denniss, I. S., Hill, N. J., Galkin, B. Ya., Zilberman, B. Y., & Fedorov, Yu. S. (1998). The applications of formo- and aceto-hydroxamic acids in nuclear fuel reprocessing. J. Alloys Compd., 271/273, 534-537.10.1016/S0925-8388(98)00146-7
  6. 6. Carrott, M. J., Fox, O. D., Le Gurun, G., Jones, C. J., Mason, C., Taylor, R. J., Andrieux, F. P. L., & Boxall, C. (2008). Oxidation-reduction reactions of simple hydroxamic acids and plutonium(IV) ions in nitric acid. Radiochim. Acta, 96, 333-343.10.1524/ract.2008.1502
  7. 7. Bathke, C. G., Ebbinghaus, B. B., Collins, B. A., Sleaford, B. W., Hase, K. R., Robel, M., Wallace, R. K., Bradley, K. S., Ireland, J. R., Jarvinen, G. D., Johnson, M. W., Prichard, A. W., & Smith, B. W. (2012). The attractiveness of materials in advanced nuclear fuel cycles for various proliferation and theft scenarios. Nucl. Technol., 179(1), 5-30.10.13182/NT10-203
  8. 8. Panak, P. J., & Geist, A. (2013). Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands. Chem. Rev., 113, 1199-1236.10.1021/cr300339923360356
  9. 9. Benay, G., Schurhammer, R., & Wipff, G. (2011). Basicity, complexation ability and interfacial behavior of BTBPs: a simulation study. Phys. Chem. Chem. Phys., 13, 2922-2934.10.1039/C0CP01975E21161114
  10. 10. Geist, A., Mullich, U., Modolo, G., & Wilden, A. (2012). Selective aqueous complexation of actinides with hydrophilic BTP and BTBP: Towards improved i-SANEX processes. In 11th Information Exchange Meeting Actinide and Fission Product Partitioning and Transmutation (pp. 1-9). Organisation for Fig. 4. Cis- and trans-conformations of SO3-Ph-BTBP. Economic Co-operation and Development - Nuclear Energy Agency: San Francisco, USA.
  11. 11. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Wilden, A., Sypula, M., Modolo, G., Vu, T., Simonin, J., Vidick, G., Bouslimani, N., & Desreux, J. F. (2012). From BTBPs to BTPhens: The effect of ligand pre-organisation on the extraction properties of quadridentate bis-triazine ligands. Procedia Chem., 7, 231-238.10.1016/j.proche.2012.10.038
  12. 12. Lewis, F. W., Harwood, L. M., Hudson, M. J., Drew, M. G. B., Hubscher-Bruder, V., Videva, V., Arnaud- -Neu, F., Stamberg, K., & Vyas, S. (2013). BTBPs versus BTPhens: Some reasons for their differences in properties concerning the partitioning of minor actinides and the advantages of BTPhens. Inorg.Chem., 52, 4993-5005.10.1021/ic302684223614770
  13. 13. Geist, A., Mullich, U., Magnusson, D., Kaden, P., Modolo, G., Wilden, A., & Zevaco, T. (2012). Actinide(III)/lanthanide(III) separation via selective aqueous complexation of actinides(III) using a hydrophilic 2,6-bis(1,2,4-triazin-3-Yl)-pyridine in nitric acid. Solvent Extr. Ion Exch., 30, 433-444.10.1080/07366299.2012.671111
  14. 14. Andrieux, F. P. L., Boxall, C., & Taylor, R. J. (2008). The hydrolysis of hydroxamic acid complexants in the presence of non-oxidising metal ions 2: Neptunium (IV) ions. J. Solution Chem., 37, 215-232.10.1007/s10953-007-9225-3
  15. 15. Trumm, S., Lieser, G., Foreman, M. R. S. J., Panak, P. J., Geist, A., & Fanghanel, T. (2010). A TRLFS study on the complexation of Cm(III) and Eu(III) with 4-t-butyl-6,6ʹ-bis-(5,6-diethyl-1,2,4-triazin-3-yl)-2,2ʹ-bipyridine in a water/2-propanol mixture. Dalton Trans., 39, 923-929.10.1039/B919247F20066237
  16. 16. Traister, G. L., & Schilt, A. A. (1976). Water-soluble sulfonated chromogenic reagents of the ferroin type and determination of iron and copper in water, blood serum, and beer with the tetraammonium salt of 2,4-bis(5,6-diphenyl-1,2,4-triazin-3-yl)pyridinetetrasulfonic acid. Anal. Chem., 48, 1216-1220.10.1021/ac50002a0391275276
  17. 17. Padhy, N., Paul, R., Mudali, U. K., & Raj, B. (2011). Morphological and compositional analysis of passive film on austenitic stainless steel in nitric acid medium. Appl. Surf. Sci., 257, 5088-5097.10.1016/j.apsusc.2011.01.026
  18. 18. Fauvet, P., Balbaud, F., Robin, R., Tran, Q. T., Mugnier, A., & Espinoux, D. (2008). Corrosion mechanisms of austenitic stainless steels in nitric media used in reprocessing plants. J. Nucl. Mater., 375, 52-64.10.1016/j.jnucmat.2007.10.017
  19. 19. Sicsic, D., Balbaud-Celerier, F., & Tribollet, B. (2014). Mechanism of nitric acid reduction and kinetic modelling. Eur. J. Inorg. Chem., 2014(36), 6174-6184.10.1002/ejic.201402708
  20. 20. Abd El-Maksoud, S. A., & Fouda, A. S. (2005). Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater. Chem. Phys., 93, 84-90.10.1016/j.matchemphys.2005.02.020
  21. 21. Ergun, U., Yuzer, D., & Emregul, K. C. (2008). The inhibitory effect of bis-2,6-(3,5-dimethylpyrazolyl) pyridine on the corrosion behaviour of mild steel in HCl solution. Mater. Chem. Phys., 109, 492-499.10.1016/j.matchemphys.2007.12.023
  22. 22. Tebbji, K., Oudda, H., Hammouti, B., Benkaddour, M., El Kodadi, M., & Ramdani, A. (2005). Inhibition effect of two organic compounds pyridine-pyrazole type in acidic corrosion of steel. Colloids Surf. A, 259, 143-149.10.1016/j.colsurfa.2005.02.030
  23. 23. Kosari, A., Moayed, M. H., Davoodi, A., Parvizi, R., Momeni, M., Eshghi, H., & Moradi, H. (2014). Electrochemical and quantum chemical assessment of two organic compounds from pyridine derivatives as corrosion inhibitors for mild steel in HCl solution under stagnant condition and hydrodynamic flow. Corros. Sci., 78, 138-15010.1016/j.corsci.2013.09.009
  24. 24. Hayward, T. M., Svishchev, I. M., & Makhija, R. C. (2003). Stainless steel flow reactor for supercritical water oxidation: corrosion tests. J. Supercrit. Fluids, 27(3), 275-281.10.1016/S0896-8446(02)00264-4
  25. 25. Caire, J. P., Laurent, F., Cullie, S., Dalard, F., Fulconis, J. M., & Delagrange, H. (2003). AISI 304 L stainless steel decontamination by a corrosion process using cerium IV regenerated by ozone - Part I: Study of the accelerated corrosion process. J. Appl. Electrochem., 33, 703-708.10.1023/A:1025051306270
  26. 26. Armijo, J. S. (1968). Intergranular corrosion of nonsensitized austenitic stainless steels. Corrosion, 24, 24-30.10.5006/0010-9312-24.1.24
  27. 27. Byrne, J. P., Kitchen, J. A., & Gunnlaugsson, T. (2014). The BTP [2,6-bis(1,2,3-triazol-4-yl)pyridine] binding motif: a new versatile terdentate ligand for supramolecular and coordination chemistry. Chem. Soc. Rev., 43, 5302-5325. 10.1039/C4CS00120F
DOI: https://doi.org/10.1515/nuka-2015-0117 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 865 - 869
Submitted on: Jun 19, 2015
Accepted on: Aug 21, 2015
Published on: Dec 30, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Richard J. Wilbraham, Colin Boxall, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.