Have a personal or library account? Click to login
The influence of ionizing radiation on the properties of starch-PVA films Cover

The influence of ionizing radiation on the properties of starch-PVA films

Open Access
|Sep 2015

References

  1. 1. Kester, J. J., & Fennema, O. R. (1986). Edible films and coatings: a review. Food Technol., 40, 47-59.
  2. 2. Campos, A., Gershenson, L. N., & Flores, S. K. (2011). Development of edible fi lms and coatings with antimicrobial activity. Review paper. Food Bioprocess Technol., 4, 849-875.10.1007/s11947-010-0434-1
  3. 3. Jimenez, A., Fabra, M. J., Talens, P., & Chiralt, A., (2012). Edible and biodegradable starch films: A review. Food Bioprocess Technol., 5, 2058-2076.10.1007/s11947-012-0835-4
  4. 4. Mali, S., Grossmann, M. V. E., Garcia, M. A., Martino, M. N., & Zaritzky, N. E. (2006). Effect of controlled storage on thermal, mechanical and barrier properties of plasticized films from different starch sources. J. Food Eng., 75, 453-460.10.1016/j.jfoodeng.2005.04.031
  5. 5. Cieśla, K. A., Nowicki, A., & Buczkowski, M. J. (2010). Radiation modification of the functional properties of the edible fi lms prepared using starch and starch-lipid system. Nukleonika, 55(2), 233-242.
  6. 6. Cieśla, K., Watzeels, N., & Rahier, H. (2014). Effect of gamma irradiation on thermophysical properties of plasticized starch and starch surfactant films. Radiat. Phys. Chem., 99, 18-22.10.1016/j.radphyschem.2014.02.006
  7. 7. Leszczyński, W. (1998). Starch application in biodegradable packaging plastics. Zeszyty Naukowe Akademii Rolniczej we Wrocławiu, Technologia Żywności, 12(328), 105-115.
  8. 8. Xiong, H. G., Tang, S. W., Tang, H. L., & Zou, P. (2008). The structure and properties of a starch-based biodegradable film. Carbohydr. Polym., 71, 263-268.10.1016/j.carbpol.2007.05.035
  9. 9. Tang, X., & Alavi, S. (2011). Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and biodegradability. Carbohydr. Polym., 85, 1-16.10.1016/j.carbpol.2011.01.030
  10. 10. Chai, W. -L., Chow, J. -D., & Chen, Ch. -Ch. (2012). Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends. J. Polym. Environ., 20, 550-564.10.1007/s10924-012-0419-4
  11. 11. Jiang, X., Jiang, T., Gan, L., Zhang, X., Dai, H., & Zhang, X. (2012). The plasticizing mechanism and effect of calcium chloride on starch/poly(vinylalcohol) fi lms. Carbohydr. Polym., 90, 1677-1684.10.1016/j.carbpol.2012.07.05022944433
  12. 12. Chen, Y., Cao, X., Chang, P. R., & Huneault, M. A. (2008). Comparative study on the fi lms of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr. Polym., 73, 8-17.10.1016/j.carbpol.2007.10.015
  13. 13. Russo, M. A. L., O’Sullivan, C., Rounsefell, B., Halley, P. J., Truss, R., & Clarke, W. P. (2009). The anaerobic degradability of thermoplastic starch: polyvinyl alcohol blends: potential biodegradable food packaging material. Bioresour. Technol., 100, 1705-1710.10.1016/j.biortech.2008.09.02618990564
  14. 14. Das, K., Ray, D., Bandyopadhyay, N. R., Sahoo, S., Mohanty, A. K., & Misra, M. (2011). Physicomechanical properties of the jute micro/nanofi bril reinforce starch/polyvinyl alcohol biocomposite films. Composites B, 42, 376-381.10.1016/j.compositesb.2010.12.017
  15. 15. Yoon, S. -D., Park, M. -H., & Byun, H. -S. (2012). Mechanical and water barrier properties of starch/PVA composite fi lms by adding nano-sized poly(methyl methacrylate-co-acrylamide) particles. Carbohydr. Polym., 87, 676-686.10.1016/j.carbpol.2011.08.046
  16. 16. Zhou, J., Ma, Y., Ren, L., Tong, J., Liu, Z., & Xie, L. (2009). Preparation and characterization of surface crosslinked TPS/PVA blend films. Carbohydr. Polym., 76, 632-638.10.1016/j.carbpol.2008.11.028
  17. 17. Khan, M. A., Bhattacharia, S. K., Kader, M. A., & Bahari, K. (2006). Preparation and characterization of ultra violet (UV) radiation cured bio-degradable films of sago starch/PVA blend. Carbohydr. Polym., 63, 500-506.10.1016/j.carbpol.2005.10.019
  18. 18. Rahmat, A. R., Rahman, W. A., Sin, L. T., & Yussuf, A. A. (2009). Approaches to improve compatibility of starch filled polymer system: a review. Mater. Sci. Eng. C-Mater. Biol. Appl., 29, 2370.10.1016/j.msec.2009.06.009
  19. 19. Senna, M. M., El-Shahat, H. A., & El Naggar, A. W. M. (2011). Characterization of gamma irradiated plasticized starch/poly(vinyl alcohol) (PLST/PVA) blends and their application as protected edible materials. J. Polym. Res., 18, 763-771.10.1007/s10965-010-9473-6
  20. 20. Parvin, F., Khan, M., Saadat, A. H. M., Khan, M. A. H., Islam, J. M. M., Ahmed, M., & Gafur, M. A. (2011). Preparation and characterization of gamma irradiated sugar containing starch/poly(vinyl alcohol)-based blend fi lms. J. Polym. Environ., 19, 1013-1022.10.1007/s10924-011-0357-6
  21. 21. Zhai, M., Yoshii, F., & Kume, T. (2003). Radiation modification of starch-based plastic sheets. Carbohydr. Polym., 52, 311-317.10.1016/S0144-8617(02)00292-8
  22. 22. Zhai, M., Zhao, L., Yoshii, F., & Kume, T. (2004). Study of antibacterial starch/chitosan blend film under the action of irradiation. Carbohydr. Polym., 57, 83-88.10.1016/j.carbpol.2004.04.003
  23. 23. Lepifre, S., Baumberger, S., Pollet, B., Cazaux, F., Coqueret, X., & Lapierre, C. (2004). Reactivity of sulfur free alkali lignins within starch films. Ind. Crop. Prod., 20, 219-230.10.1016/j.indcrop.2004.04.023
  24. 24. Kang, H. J., Jo, Ch., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). A combination of gamma irradiation and CaCl2 immersion for a pectin-based biodegradable film. Carbohydr. Polym., 60, 547-551.10.1016/j.carbpol.2005.02.016
  25. 25. Kang, H., Lee, N. Y., Kwon, J. H., & Byun, M. W. (2005). Pectin and gelatin based film. Effect of gamma irradiation on the mechanical properties and biodegradation. Radiat. Phys. Chem., 72, 745-750.10.1016/j.radphyschem.2004.05.045
  26. 26. Kober, E., Gonzalez, M. E., Gavioli, N., & Salmoral, E. M. (2007). Modification of water absorption capacity of a plastic based on bean protein using gamma10.1016/j.radphyschem.2006.05.017
  27. irradiated starches as additives. Radiat. Phys. Chem., 76, 55-60.
  28. 27. Khan, R. A., Salmieri, S., Dussault, D., Uribe-Calderon, J., Khamal, M. R., Safrany, A., & Lacroix, M. (2010). Production of nanocellulose-reinforced methylcellulose-based biodegradable fi lms. J. Agric. Food Chem., 58, 7878-7885.10.1021/jf100685320545366
  29. 28. Ryzhkova, A., Jarzak, U., Schäffer, A., Bämer, M., & Swiderek, P. (2011). Modifi cation of surface properties of thin polysaccharide fi lms by low energy electron exposure. Carbohydr. Polym., 83, 608-615.10.1016/j.carbpol.2010.08.029
  30. 29. El Sayed, A. M., Diab, H. M., & El-Mallawany, R. (2013). Controlling the dielectric and optical properties of PVA/PEG polymer blend via e-beam irradiation. J. Polym. Res., 20, 255. DOI: 10.1007/s10965-013-0255-9.10.1007/s10965-013-0255-9
  31. 30. Ravindrahary, I. V., Rajashekhar, F. B., Praveena, S. D., & Ganesh, S. (2015). Impact of electron beam irradiation on free-volume related microstructural properties of PVA:NaBr polymer composites Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 342, 29-38.
  32. 31. Stoica-Guzun, A., Stroescu, M., Jipa, J., Dobre, L., & Zaharescu, T. (2013). Effect of γ irradiation on poly(winyl alcohol) and bacterial cellulose composites used as packaging materials. Radiat. Phys. Chem., 84, 200-204.10.1016/j.radphyschem.2012.06.017
  33. 32. Haji-Saeid, M., Sampa, M. H. O., & Chmielewski, A. G. (2007). Radiation treatment for sterilization of packaging materials. Radiat. Phys. Chem., 76, 1535-1541.10.1016/j.radphyschem.2007.02.068
  34. 33. Chmielewski, A. G. (2006). Packaging for food irradiation. Warsaw: Institute of Nuclear Chemistry and Technology. (Raporty IChTJ. Seria B nr 1/2006).
  35. 34. Cieśla, K., & Eliasson, A. -C. (2007). DSC studies of gamma irradiation effect on the amylose-lipid complex formed in wheat and potato starches. Acta Aliment. Hung., 36(1), 111-126.10.1556/AAlim.36.2007.1.12
  36. 35. Cieśla, K. (2009). Transformation of supramolecular structure initialised in natural polymers by gamma irradiation. Warsaw: Institute of Nuclear Chemistry and Technology (in Polish).
  37. 36. Aguillera, J. M., & Rojas, E. (1996). Rheological, thermal and microstructural properties of whey protein - cassava starch gels. J. Food. Sci., 61, 962-966.10.1111/j.1365-2621.1996.tb10911.x
  38. 37. Zagórski, Z. P., & Rafalski, A. (1998). Free radicals in irradiated unstabilized polypropylene, as seen by DRS absorption-spectrophotometry. Radiat. Phys. Chem., 52, 257-260.10.1016/S0969-806X(98)00151-0
  39. 38. Głuszewski, W., & Zagórski, Z. (2008). Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika, 53, 22-25.
  40. 39. Cieśla, K., & Sartowska, B. (2015). Modification of the microstructure of the films formed by gamma irradiated starch examined by SEM. Radiat. Phys. Chem. DOI: 10.1016/j.radphyschem.2015.04.027.10.1016/j.radphyschem.2015.04.027
DOI: https://doi.org/10.1515/nuka-2015-0088 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 669 - 677
Submitted on: Nov 13, 2014
|
Accepted on: May 20, 2015
|
Published on: Sep 25, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Anna Abramowska, Krystyna A. Cieśla, Marek J. Buczkowski, Andrzej Nowicki, Wojciech Głuszewski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.