Have a personal or library account? Click to login
Magnetic resonance study of co-modified (Co,N)-TiO2 nanocomposites Cover

Magnetic resonance study of co-modified (Co,N)-TiO2 nanocomposites

Open Access
|Aug 2015

References

  1. 1. Kim, D. H., Yang, J. S., Lee, K. W., Bu, S. D., Noh, T. W., Oh, S.-J., Kim, Y. -W., Chung, J. -S., Tanaka, H., Lee, H. Y., & Kawai, T. (2002). Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Appl. Phys. Lett., 81, 2421–2423.10.1063/1.1509477
  2. 2. Punnoose, A., Seehra, M. S., Park, W. K., & Moodera, J. S. (2003). On the room temperature ferromagnetism in Co-doped TiO2 films. J. Appl. Phys., 93, 7867–7869.10.1063/1.1556121
  3. 3. Santara, B., Pal, B., & Giri, P. K. (2011). Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J. Appl. Phys., 110, 114322.10.1063/1.3665883
  4. 4. Hong, N. H., Sakai, J., Prellier, W., Hassini, A., Ruyter, A., & Gervais, F. (2004). Ferromagnetism in transition-metal-doped TiO2 thin films. Phys. Rev. B, 70, 195204.
  5. 5. Griffin, K. A., Pakhomov, A. B., Wang, C. M., Heald, S. M., & Krishnan Kannan, M. (2005). Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. Phys. Rev. Lett., 94, 157204.
  6. 6. Sangaletti, L., Mozzati, M. C., Galinetto, P., Azzoni, C. B., Speghini, A., Bettinelli, M., & Calestani, G. (2006). Ferromagnetism on a paramagnetic host background: the case of rutile TM:TiO2 single crystals (TM = Cr, Mn, Fe, Co, Ni, Cu). J. Phys.-Condens. Matter, 18, 7643–7650.10.1088/0953-8984/18/32/01221690876
  7. 7. Nefedov, A., Akdogan, N., Zabel, H., Khaibullin, R. I., & Tagirov, L. R. (2006). Spin polarization of oxygen atoms in ferromagnetic Co-doped rutile TiO2. Appl. Phys. Lett., 89, 182509.10.1063/1.2378398
  8. 8. Park, Y. R., Choi, S., Lee, J. H., Kim, K. J., & Kim, C. S. (2007). Ferromagnetic properties of Ni-doped rutile TiO2−δ. J. Korean Phys. Soc., 50, 638–642.10.3938/jkps.50.638
  9. 9. Kim, D., Hong, J., Park, Y. R., & Kim, K. J., (2009). The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. J. Phys.-Condens. Matter, 21, 195405(4pp.).10.1088/0953-8984/21/19/19540521825483
  10. 10. Li, H., Liu, M., Zeng, Y., & Huang, T. (2010). Coexistence of antiferromagnetic and ferromagnetic in Mn-doped anatase TiO2 nanowires. J. Cent. South Univ., 17, 239–243.10.1007/s11771-010-0037-z
  11. 11. Green, I. X., Tang, W., Neurock, M., & Yates, J. T. Jr (2011). Spectroscopic observation of dual catalytic sites during oxidation of CO on a Au/TiO2 catalyst. Science, 333, 736–739.10.1126/science.120727221817048
  12. 12. Mudarra Navarro, A. M., Bilovol, V., Cabrera, A. F., & Rodriguez Torres, C. E. (2012). Relationship between structural and magnetic properties in (Ti,Fe) O2 powders obtained by mechanical milling. Physica B, 407, 3225–3228.10.1016/j.physb.2011.12.072
  13. 13. Zhao, Y. L., Motapothula, M., Yakovlev, N. L., Liu, Z. Q., Dhar, S., Rusydi, A., Ariando, Breese, M. B. H., Wang, Q., & Venkatesan, T. (2012). Reversible ferromagnetism in rutile TiO2 single crystals induced by nickel impurities. Appl. Phys. Lett., 101, 142105.10.1063/1.4756799
  14. 14. Parras, M., Varela, A., Cortes-Gil, R., Boulahya, K., Hernando, A., & Gonzales-Calbet, J. M. (2013). Room-temperature ferromagnetism in reduced rutile TiO2−δ nanoparticles. J. Phys. Chem. Lett., 4, 2171–2176.10.1021/jz401115q
  15. 15. Nakai, I., Sasano, M., Inui, K., Korekawa, T., Ishijima, H., Katoh, H., Li, Y. J., & Kurisu, M. (2013). Oxygen vacancy and magnetism of a room temperature ferromagnet Co-doped TiO2. J. Korean Phys. Soc., 63, 532–537.10.3938/jkps.63.532
  16. 16. Choudhury, B., & Choudhury, A. (2013). Structural, optical and ferromagnetic properties of Cr doped TiO2 nanoparticles. Mater. Sci. Eng. B, 178, 794–800.10.1016/j.mseb.2013.03.016
  17. 17. Santara, B., Giri, P. K., Dhara, S., Imakita, K., & Fuji, M. (2014). Oxygen vacancy-mediated enhanced ferromagnetism in undoped and Fe-doped TiO2 nanoribbons. J. Phys. D-Appl. Phys., 47, 235304(14pp.).
  18. 18. Dolat, D., Mozia, S., Ohtani, B., & Morawski, A. W. (2013). Nitrogen, iron-single modified (N-TiO2, Fe-TiO2) and co-modified (Fe,N-TiO2) rutile titanium dioxide as visible-light active photocatalysts. Chem. Eng. J., 225, 358–364.10.1016/j.cej.2013.03.047
  19. 19. Guskos, N., Glenis, S., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., Ohtani, B., & Morawski, A. W. (2014). Magnetic resonance study of co-modified (Fe,N)-TiO2. J. Alloy. Compd., 606, 32–36.10.1016/j.jallcom.2014.03.130
  20. 20. Coronado, J. M., Maira, A. J., Conesa, J. C., Yeung, K. L., Augugliaro, V., & Soria, J. (2001). EPR study of the surface characteristics of nanostructured TiO2 under UV irradiation. Langmuir, 17, 5368–5374.10.1021/la010153f
  21. 21. Mele, G., Del Sole, R., Vasapollo, G., Marci, G., Garcia-Lopez, E., Palmisano, L., Coronado, J. M., Hernandez-Alonso, M. D., Malitesta, C., & Guascito, M. R. (2005). TRMC, XPS, and EPR characterizations of polycrystalline TiO2 porphyrin impregnated powders and their catalytic activity for 4-nitrophenol photodegradation in aqueous suspension. J. Phys. Chem. B, 109, 12347–12352.10.1021/jp044253g16852524
  22. 22. Yang, S., Halliburton, L. E., Manivannan, A., Bunton, P. H., Baker, D. B., Klemm, M., Horn, S., & Fujishima, A. (2009). Photoinduced electron paramagnetic resonance study of electron traps in TiO2 crystals: Oxygen vacancies and Ti3+ ions. Appl. Phys. Lett., 94, 162114(3pp.).10.1063/1.3124656
  23. 23. Tian, B., Li, C., Gu, F., Jiang, H., Hu, Y., & Zhang, J. (2009). Flame sprayed V-doped TiO2 nanoparticles with enhanced photocatalytic activity under visible light irradiation. Chem. Eng. J., 151, 220–227.10.1016/j.cej.2009.02.030
  24. 24. Brandao, F. D., Pinheiro, M. V. B., Ribeiro, G. M., Medeiros-Ribeiro, G., & Krambrock, K. (2009). Identification of two light-induced charge states of the oxygen vacancy in single-crystalline rutile TiO2. Phys. Rev. B, 80, 235204.
  25. 25. Yang, S., Brant, A. T., & Halliburton, L. E. (2010). Photoinduced self-trapped hole center in TiO2 crystals. Phys. Rev. B, 82, 035209.
  26. 26. Macdonald, I. R., Howe, R. F., Zhang, X., & Zhou, W. (2010). In situ EPR studies of electron trapping in a nanocrystalline rutile. J. Photochem. Photobiol. A-Chem., 216, 238–243.10.1016/j.jphotochem.2010.07.023
  27. 27. Shkrob, I. A., Marin, T. W., Chemerisov, S. D., & Sewilla, M. D. (2011). Mechanistic aspects of photooxidation of polyhydroxylated molecules on metal oxides. J. Phys. Chem. C, 115, 4642–4648.10.1021/jp110612s308307521532934
  28. 28. Guskos, N., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2012). Influence of annealing and rinsing on magnetic and photocatalytic properties of TiO2. Mater. Sci. Eng. B, 177, 223–227.10.1016/j.mseb.2011.10.017
  29. 29. Guskos, N., Typek, J., Guskos, A., Berczynski, P., Dolat, D., Grzmil, B., & Morawski, A. (2013). Magnetic resonance study of annealed and rinsed N-doped TiO2 nanoparticles. Cent. Eur. J. Chem., 11, 1996–2004.10.2478/s11532-013-0340-2
  30. 30. Guskos, N., Zolnierkiewicz, G., Guskos, A., Typek, J., Berczynski, P., Dolat, D., Mozia, S., & Morawski, A. W. (2015). Magnetic resonance study of nickel and nitrogen co-modified titanium dioxide nanocomposites. In NATO Science for Peace and Security Series – C: Environmental Security, “Nanotechnology in the security systems”, 29 September – 3 October 2013 (pp. 33–48). Dordrecht: Springer.
  31. 31. Dolat, D., Mozia, S., Wrobel, R. J., Moszynski, D., Ohtani, B., Guskos, N., & Morawski, A. W. (2015). Nitrogen-doped, metal-modified rutile titanium dioxide as photocatalysts for water remediation. Appl. Catal. B-Environ., 162, 310–318.10.1016/j.apcatb.2014.07.001
  32. 32. Guskos, N., Anagnostakis, E. A., Gasiorek, G., Typek, J., Bodzionny, T., Narkiewicz, U., Arabczyk, W., & Konicki, W. (2004). Magnetic resonance study of α-Fe and Fe3C nanoparticle agglomerates in a nonmagnetic matrix. Mol. Phys. Rep., 39, 58–65.
  33. 33. Guskos, N., Typek, J., Maryniak, M., Narkiewicz, U., Kucharewicz, I., & Wrobel, R. (2005). FMR study of agglomerated nanoparticles in a Fe3C/C system. Materials Science-Poland, 23, 1001–1008.
  34. 34. Helminiak, A., Arabczyk, W., Zolnierkiewicz, G., Guskos, N., & Typek, J. (2011). FMR study of the influence of carburization levels by methane decomposition on nanocrystalline iron. Rev. Adv. Mater. Sci., 29, 166–174.
  35. 35. Kliava, J. (2009). Electron magnetic resonance of nanoparticles: Superparamagnetic resonance. In S. P. Gubin (Ed.), Magnetic nanoparticles (pp. 255–302). Wiley-VCH. Retrieved 15 September 2009, from http://onlinelibrary.wiley.com/book/10.1002/9783527627561.
DOI: https://doi.org/10.1515/nuka-2015-0073 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 411 - 416
Submitted on: Oct 7, 2014
|
Accepted on: Jan 30, 2015
|
Published on: Aug 6, 2015
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Niko Guskos, Grzegorz Zolnierkiewicz, Aleksander Guskos, Janusz Typek, Pawel Berczynski, Diana Dolat, Sylwia Mozia, Constantinos Aidinis, Antoni W. Morawski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.