Have a personal or library account? Click to login
Growth and EPR properties of ErVO4 single crystals Cover

Growth and EPR properties of ErVO4 single crystals

Open Access
|Aug 2015

References

  1. 1. Polosan, S., Bettinelli, M., & Tsuboi, T. (2007). Photoluminescence of Ho3+:YVO4 crystals. Phys. Status Solidi (c), 4(3), 1352–1355. DOI: 10.1002/pssc.200673749.10.1002/pssc.200673749
  2. 2. Ohlsson, N., Krishna, R. M., & Kroll, S. (2002). Quantum computer hardware based on rare-earth-ion-doped inorganic crystals. Opt. Commun., 201, 71–77. DOI: 10.1016/S0030-4018(01)01666-2.10.1016/S0030-4018(01)01666-2
  3. 3. Terada, Y., Shimamura, K., Kochurikhin, V. V., Barashov, L. V., Ivanov, M. A., & Fukuda, T. (1996). Growth and optical properties of ErVO4 and LuVO4 single crystals. J. Cryst. Growth, 167, 369–372. DOI: 10.1016/0022-0248(96)00407-1.10.1016/0022-0248(96)00407-1
  4. 4. Guillot-Noel, O., Simons, D., & Gourier, D. (1999). EPR study of the multisite character of Nd3+ ions in zircon-type matrices YMO4 (M = V, P, As). J. Phys. Chem. Solids, 60, 555–565. DOI: 10.1016/S0022-3697(98)00299-6.10.1016/S0022-3697(98)00299-6
  5. 5. Misra, S. K., Isbe, S., Capobianco, J. A., & Cavalli, E. (1999). Electron paramagnetic resonance of Er3+ doped in YVO4: hyperfine parameters. Chem. Phys., 240, 313–318. DOI: 10.1016/S0301-0104(98)00393-0.10.1016/S0301-0104(98)00393-0
  6. 6. Will, G., Lugscheider, W., Zinn, W., & Patscheke, E. (2006). Neutron diffraction and susceptibility measurements on ErPO4 and ErVO4. Solid State Phys., 46(2), 597–601. DOI: 10.1002/pssb.2220460216.10.1002/pssb.2220460216
  7. 7. Range, K., & Meister, H. (1990). ErVO4-II, a scheelite-type high-pressure modification of erbium orthovanadate. Acta Crystallogr. C-Cryst. Struct. Commun., 46, 1093–1094. DOI: 10.1107/S0108270189014162.10.1107/S0108270189014162
  8. 8. Misra, S. K., & Andronenko, S. I. (2001). EPR study of Er3+ crystal-field and Ho-165(3+)-Er3+ interactions in single crystals of HoxY1-xVO4 (x=0.02-1.00). Phys. Rev. B, 64, 094435-8. DOI: 10.1103/Phys-RevB.64.094435.
  9. 9. Misra, S. K., & Andronenko, S. I. (1996). Effect of host paramagnetic ions on the Gd3+ EPR linewidth in diluted Van-Vleck paramagnets TmxLu1-xPO4 and HoxY1-xVO4 and EPR spectra of Er3+ in HoxY1-xVO4Phys. Rev. B, 53, 11631–11641. DOI: 10.1103/PhysRevB.53.11631.10.1103/PhysRevB.53.116319982786
  10. 10. Abragam, A., & Bleanely, B. (1970). Electron paramagnetic resonance of transition ions. London: Oxford University Press.
  11. 11. Oka, K., Unoki, H., Shibata, H., & Eisaki, H. (2006). Crystal growth of rare-earth orthovanadate (RVO4) by the floating-zone method. J. Cryst. Growth, 286, 288–293. DOI: 10.1016/j.jcrysgro.2005.08.058.10.1016/j.jcrysgro.2005.08.058
  12. 12. Mombourquette, M. J., Weil, J. A., & McGavi, D. G. (1999). EPR-NMR User’s manual. Saskatoon, Canada: Department of Chemistry, University of Saskatchewan.
  13. 13. Pool, C. P., & Farach, H. A. (1979). Lineshapes in electron spin resonance. Bull. Magn. Reson., 1(4), 162–194.
  14. 14. Dyson, F. J. (1955). Electron spin resonance absorption in metals. II. Theory of electron diffusion and the skin effect. Phys. Rev., 98, 337–359. DOI: 10.1103/PhysRev.98.349.10.1103/PhysRev.98.349
  15. 15. Benner, H., Brodehl, M., Seitz, H., & Wiese, J. (1983). Influence of nondiagonal dynamic susceptibility on the EPR signal of Heisenberg magnet. J. Phys. C-Solid State Phys., 16, 6011–6030. http://iopscience.iop.org/0022-3719/16/31/015.10.1088/0022-3719/16/31/015
  16. 16. Choukroun, J., Richard, J.-L., & Stepanov, A. (2003). Electron paramagnetic resonance in weakly anisotropic Heisenberg magnets with a symmetric anisotropy. Phys. Rev. B, 68, 144415-10. DOI: 10.1103/Phys-RevB.68.144415.
  17. 17. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance. Hoboken, New Jersey: John Wiley & Sons Inc.
  18. 18. Ranon, U. (1968). Paramagnetic resonance of Nd3+, Dy3+, Er3+ and Yb3+ in YVO4. Phys. Lett. A, 28, 228–229. DOI: 10.1016/0375-9601(68)90218-1.10.1016/0375-9601(68)90218-1
  19. 19. Bravo, D., Martin, A., & Lopez, F. J. (1999). A new EPR centre of Er3+ in MgO or ZnO co-doped LiNbO3 single crystals. Solid State Commun., 112, 541–554. DOI: 10.1016/S0038-1098(99)00395-6.10.1016/S0038-1098(99)00395-6
  20. 20. Misra, S. K., Chang, Y., & Felsteiner, J. (1997). A calculation of effective g-tensor values for R3+ ions in RBa2Cu3O7-δ and RBa2Cu4O8 (R = rare earth): Low temperature ordering of rare-earth moments. J. Phys. Chem. Solids, 58, 1–11. DOI: 10.1016/S0022-3697(96)00110-2.10.1016/S0022-3697(96)00110-2
  21. 21. Chai, R.-P., Kuang, X.-Y., Li, C.-G., & Zhao, Y.-R. (2011). Theoretical studies of EPR spectra and defect structure for three Er3+ centers in thorium dioxide. Chem. Phys. Lett., 505, 65–70. DOI: 10.1016/j.cplett.2011.02.013.10.1016/j.cplett.2011.02.013
  22. 22. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A, 32, 751–767. DOI: 10.1107/S0567739476001551.10.1107/S0567739476001551
DOI: https://doi.org/10.1515/nuka-2015-0072 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 405 - 410
Submitted on: Sep 19, 2014
Accepted on: Jan 30, 2015
Published on: Aug 6, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Grzegorz Leniec, Sławomir M. Kaczmarek, Marek Berkowski, Michał Głowacki, Tomasz Skibiński, Bohdan Bojanowski, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.