Have a personal or library account? Click to login

First dedicated observations of runaway electrons in the COMPASS tokamak

Open Access
|Jun 2015

References

  1. 1. Kikuchi, M., Lackner, K., & Tran, M. Q. (2012). Fusion physics (pp. 352–353). Vienna: IAEA.
  2. 2. Pánek, R., Bilyková, P., Fuchs, V., Hron, M., Chráska, P., Pavlo, P., Stockel, J., Urban, J., Weinzettl, V., Zajac, J., & Zacek, F. (2006). Reinstallation of the COMPASS-D tokamak in IPP ASCR. Czech. J. Phys., 56(Suppl. 2), B125–B137. DOI: 10.1007/s10582-006-0188-1.10.1007/s10582-006-0188-1
  3. 3. Wilson, C. T. R. (1925). The acceleration of β-particles in strong electric fields such as those of Thunderclouds. Proc. Cambridge Philos. Soc., 22(04), 534–538. DOI: 10.1017/S0305004100003236.10.1017/S0305004100003236
  4. 4. Solis, J. R. (2012, November 20). Disruption and runaway electrons in tokamaks. Lecture notes distributed in the unit Plasma Physics and Fusion Seminars, Universidad Carlos III de Madrid, Madrid, Spain.
  5. 5. Dreicer, H. (1959). Electron and ion runaway in a fully ionized gas I. Phys. Rev., 115(2), 238–249. DOI: 10.1103/PhysRev.115.238.10.1103/PhysRev.115.238
  6. 6. Connor, J. W., & Hestie, R. J. (1975). Relativistic limitations on runaway electrons. Nucl. Fusion, 15(3), 415–424. DOI: 10.1088/0029-5515/15/3/007.10.1088/0029-5515/15/3/007
  7. 7. Fernandez-Gomez, I., Martin-Solis, J. R., & Sanchez, R. (2012). Perpendicular dynamics of runaway electrons in tokamak plasmas. Phys. Plasmas, 19, 102504. DOI: 10.1063/1.4757644.10.1063/1.4757644
  8. 8. Eriksson, L. -G., Helander, P., Andersson, F., Anderson, D., & Lisak, M. (2004). Current dynamics during disruptions in large tokamaks. Phys. Rev. Lett., 92(20), 205004. DOI: 10.1103/PhysRev-Lett.92.205004.
  9. 9. Lu, H. W., Hu, L. Q., Li, Y. D., Zhong, G. Q., Lin, S. Y., Xu, P., & EAST Team. (2010). Investigation of fast pitch angle scattering of runaway electrons in the EAST tokamak. Chinese Phys. Lett., 19(12), 125201. DOI: 10.1088/1674-1056/19/12/125201.10.1088/1674-1056/19/12/125201
  10. 10. Chen, Z. Y., Wan, B. N., Ling, B. L., Gao, X., Du, Q., Ti, A., Lin, S. Y., & Sajjad, S. (2007). Runaway electron beam instability in slide-away discharges in the HT-7 tokamak. Chinese Phys. Lett., 24(11), 3195–3198. DOI: 10.1088/0256-307X/24/11/048.10.1088/0256-307X/24/11/048
  11. 11. Knoepfel, H., & Spong, D. A. (1979). Runaway electrons in toroidal discharges. Nucl. Fusion, 19(6), 785–829. DOI: 10.1088/0029-5515/19/6/008.10.1088/0029-5515/19/6/008
  12. 12. Papřok, R., Havlíček, J., Hron, M., Janky, F., Krlín, L., Stökel, J., & Kocmanová, L. (2012). Runaway electrons in COMPASS tokamak. In WDS’12 Proceedings, 29 May – 1 June 2012 (pp. 228–232). Prague, Czech Republic: Charles University.
  13. 13. Gill, R. D., Alper, B., de Baar, M., Hender, T. C., Johnson, M. F., Riccardo, V., & contributors to the EFDA-JET Work programme. (2000). Behavior of disruption generated runaways in JET. Nucl. Fusion, 40(8), 1039–1044. DOI: 10.1088/0029-5515/42/8/312.10.1088/0029-5515/42/8/312
  14. 14. Jakubowski, L., Plyusnin, V. V., Sadowski, M. J., Zebrowski, J., Malinowski, K., Rabiński, M., Fernandes, H., Silva, C., Duarte, P., & Jakubowski, M. (2012). Estimation of ISTTOK runaway-electrons energies by means of a Cherenkov-type probe with modified AlN radiators. Nukleonika, 57(2), 177–181.
  15. 15. Finken, K. H., Watkins, J. G., Rusbüldt, D., Corbett, W. J., Dippel, K. H., Goebel, D. M., & Moyer, R. A. (1990). Observation of infrared synchrotron radiation from tokamak runaway electrons in TEXTOR. Nucl. Fusion, 30(5), 859–870. DOI: 10.1088/0029-5515/30/5/005.10.1088/0029-5515/30/5/005
  16. 16. Jaspers, R. (1995). Relativistic runaway electrons in tokamak plasmas. Doctoral thesis, Eindhoven University, The Netherlands.
  17. 17. Stahl, A., Landreman, M., Papp, G., Hollmann, E., & Fulop, T. (2013). Synchrotron radiation from a runaway electron distribution in tokamaks. Phys. Plasmas, 20, 093302. DOI: 10.1063/1.4821823.10.1063/1.4821823
  18. 18. Havlíček, J., & Hronová, O. (2010). Magnetic diagnostics of COMPASS tokamak. Retrieved June 5th, 2014, from http://www.ipp.cas.cz/Tokamak/euratom/index.php/en/compass-diagnostics/magneticdiagnostics.
  19. 19. Papřok, R., Krlín, L., & Stökel, J. (2013). Observation and prediction of runaway electrons in the COMPASS tokamak. In WDS’13 Proceedings, 4–7 June 2013 (pp. 60–66). Prague, Czech Republic: Charles University.
  20. 20. Jakubowski, L., Sadowski, M. J., Stanislawski, J., Malinowski, K., Zebrowski, J., Jakuwoski, M., Weinzettl, V., Stökel, J., Vacha, M., & Peterka, M. (2007). Application of Cherenkov detectors for fast electron measurements in CASTOR-tokamak. In 34th EPS Conference on Plasma Physics, 2–6 July 2007 (P- 5.097). Warsaw, Poland: European Physical Society.
  21. 21. Jakubowski, L., Sadowski, M. J., Stanislawski, J., Malinowski, K., Zebrowski, J., Jakuwoski, M., Weinzettl, V., Stökel, J., Vacha, M., & Peterka, M. (2008). Cherenkov detector for measurements of fast electrons in CASTOR-tokamak. In AIP’08 Conference Proceedings, 22–24 October 2007 (pp. 219–223). Lisbon, Portugal: American Institute of Physics.
DOI: https://doi.org/10.1515/nuka-2015-0052 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 249 - 255
Submitted on: Jun 12, 2014
Accepted on: Oct 20, 2014
Published on: Jun 22, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Miloš Vlainić, Jan Mlynář, Vladímir Weinzettl, Richard Papřok, Martin Imríšek, Ondřej Ficker, Petr Vondráček, Josef Havlíček, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.