Have a personal or library account? Click to login

CFD modeling of passive autocatalytic recombiners*

Open Access
|Jun 2015

References

  1. 1. OECD/NEA. (2007). Source term assessment, containment atmosphere control systems and accident consequences. (Report CSNI 87/135). Paris.
  2. 2. OECD/NEA. (1999). SOAR on containment thermalhydraulics and hydrogen distribution. (Report NEA/CSNI(R) 99/16). Paris.
  3. 3. Preußer G., Freudenstein, K. F., & Reinders, R. (1996). Concept for the analysis of hydrogen problems in nuclear power plants after accidents. In Proceedings of the OECD/NEA/CSNI Workshop on the Implementation of Hydrogen Mitigation Techniques (pp. 113–127). Winnipeg, Manitoba.
  4. 4. Arnould, F., Bachellerie, E., & et al. (2001). State of the art on hydrogen passive autocatalytic recombiner. In Proceedings of the FIssion SAfety (FISA’2001). EU research in reactor safety. Luxembourg.
  5. 5. Bachellerie, E., Arnould, F., Auglaire, M., de Boeck, B., Braillard, O., Eckardt, B., Ferroni, F., & Moffett, R. (2003). Generic approach for designing and implementing a passive autocatalytic recombiner PAR-system in nuclear power plant containments. Nucl. Eng. Des., 221, 151–165.10.1016/S0029-5493(02)00330-8
  6. 6. Reinecke, E. -A., Boehm, J., Drinovac, P., & Struth, S. (2005). Modeling of catalytic recombiners: Comparison of REKO-DIREKT calculations with REKO-3 experiments. In Proceedings of International Conference on Nuclear Energy for New Europe, September 5–8, 2005. Bled.
  7. 7. Reinecke, E. -A., Tragsdorf, I. M., & Gierling, K. (2004). Studies on innovative hydrogen recombiners as safety devices in the containments of light water reactors. Nucl. Eng. Des., 230, 49–59.10.1016/j.nucengdes.2003.10.009
  8. 8. Levine, R. D. (2005). Molecular reaction dynamics. Cambridge University Press.10.1017/CBO9780511614125
  9. 9. Launder, B. E. (1978). Heat and mass transport. In P. Bradshaw (Ed.) Topics in applied physics: turbulence (Vol. 12). Berlin: Springer.
  10. 10. Kays, W. M., & Crawford, M. E. (1980). Convective heat and mass transfer. McGraw Hill.
  11. 11. Tominaga, Y., & Stathopoulos, T. (2007). Turbulent Schmidt numbers for CFD analysis with various types of flowfield. Atmos. Environ., 41(37), 8091–8099.10.1016/j.atmosenv.2007.06.054
  12. 12. CHEMKIN. (2000). Reaction design: TRANSPORT, a software package for the evaluation of gas-phase, multicomponent transport properties. CHEMKIN Collection Release 3.6. (Document No. TRA-036-1).
  13. 13. Chapman, S., & Cowling, T. G. (1970). The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases (3rd ed.). Cambridge University Press.
  14. 14. Dabbene, F., & Paillére, H. (2007). PARIS Benchmark Report. (CEA-Rapport DM2S – SMFE/LTMF/RT/07-003/A).
  15. 15. Gera, B., Sharma, P. K., Singh, R. K., & Vaze, K. K. (2011). CFD analysis of passive autocatalytic recombiner and its interaction with containment atmosphere. BARC Newsletter, Founder’s Day Special Issue.
  16. 16. AREVA Inc. (2011). AREVA passive autocatalytic recombiner. (Document No. G-008-V1PB-2011-ENG).
DOI: https://doi.org/10.1515/nuka-2015-0050 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 347 - 353
Submitted on: Dec 12, 2014
Accepted on: Mar 30, 2015
Published on: Jun 22, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Magdalena Orszulik, Adam Fic, Tomasz Bury, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.