Have a personal or library account? Click to login

Shock dynamics induced by double-spot laser irradiation of layered targets

Open Access
|Jun 2015

References

  1. 1. Stevenson, R. M., Pepler, D. A., Danson, C. N., Norman, M. J., Bett, T. H., & Ross, I. N. (1994). Binary-phase zone plate arrays for the generation of uniform focal profiles. Opt. Lett., 19(6), 363–365.10.1364/OL.19.000363
  2. 2. Koenig, M., Faral, B., Boudenne, J. M., Batani, D., Benuzzi, A., & Bossi, S. (1994). Optical smoothing techniques for shock wave generation in laser-produced plasmas. Phys. Rev. E, 50(5), R3314.10.1103/PhysRevE.50.R3314
  3. 3. Batani, D., Bleu, C., & Lower, Th. (2002). Design, simulation and application of phase plates. Eur. Phys. J. D, 19, 231–243.10.1140/epjd/e20020074
  4. 4. Kato, Y., Mima, K., Miyanaga, N., Arinaga, S., Kitagawa, Y., Nakatsuka, M., & Yamanaka, C. (1984). Random phasing of high-power lasers for uniform target acceleration and plasma-instability suppression. Phys. Rev. Lett., 53(11), 1057.10.1103/PhysRevLett.53.1057
  5. 5. Dixit, S. N., Lawson, J. K., Manes, K. R., Powell, H. T., & Nugent, A. (1994). Kinoform phase plates for focal plane irradiance profile control. Opt. Lett., 19(6), 417–419.10.1364/OL.19.000417
  6. 6. Skupsky, S., Short, R. W., & Kessler, T. (1989). Improved laser-beam uniformity using the angular dispersion of frequency modulated light. J. Appl. Phys., 66, 3456.10.2172/6211374
  7. 7. Lehmberg, R. H., & Obenschain, S. P. (1983). Use of induced spatial incoherence for uniform illumination of laser fusion targets. Opt. Commun., 46, 27–31.10.1016/0030-4018(83)90024-X
  8. 8. Willi, O., Afshar-rad, T., Coe, S., & Giulietti, A. (1990). Study of instabilities in long scale-length plasmas with and without laser-beam-smoothing techniques. Phys. Fluids, 2, 1318–1324.10.1063/1.859549
  9. 9. Batani, D., Bossi, S., Benuzzi, A., Koenig, M., Faral, B., Boudenne, J. M., Grandjouan, N., Atzeni, S., & Temporalet, M. (1996). Optical smoothing for shock-wave generation: application to the measurement of equations of state. Laser Part. Beams, 14(2), 211–223.10.1017/S0263034600009940
  10. 10. Montgomery, D. S., Moody, J. D., Baldis, H. A., Afeyan, B. B., Berger, R. L., Estabrook, K. G., Lasinski, B. F., Williams, E. A., & Labaune, C. (1996). Effects of laser beam smoothing on stimulated Raman scattering in exploding foil plasmas. Phys. Plasmas, 3(5), 1728. http://dx.doi.org/10.1063/1.871682.
  11. 11. Labaune, C., Baldis, H. A., Schifano, E., Bauer, B. S., Maximov, A., Ourdev, I., Rozmus, W., & Pesme, D. (2000). Enhanced forward scattering in the case of two crossed laser beams interacting with a plasma. Phys. Rev. Lett., 85(8), 1658.10.1103/PhysRevLett.85.165810970582
  12. 12. Emery, M. H., Gardner, J. H., Lehmberg, R. H., & Obenschain, S. P. (1991). Hydrodynamic target response to an induced spatial incoherence-smoothed laser beam. Phys. Fluids B, 3, 2640–2650.10.1063/1.859976
  13. 13. Desselberger, M., Afshar-rad, T., Khattak, F., Viana, S., & Willi, O. (1992) Nonuniformity imprint on the ablation surface of laser-irradiated targets. Phys. Rev. Lett., 68(10), 1539.10.1103/PhysRevLett.68.153910045157
  14. 14. Batani, D., Balducci, A., Nazarov, W., Löwer, Th., Hall, T., Koenig, M., Faral, B., Benuzzi, A., & Temporal, M. (2001). Use of low-density foams as pressure amplifiers in equation-of-state experiments with laser-driven shock waves. Phys. Rev. E, 63(4), 046410.10.1103/PhysRevE.63.04641011308959
  15. 15. Batani, D., Nazarov, W., Hall, T., Löwer, Th., Koenig, M., Faral, B., Benuzzi-Mounaix, A., & Grandjouan, N. (2000). Foam smoothing studied through laser produced shocks. Phys. Rev. E, 62(6), 8573–8582.10.1103/PhysRevE.62.8573
  16. 16. Benocci, R., Batani, D., Dezulian, R., Redaelli, R., Lucchini, G., Canova, F., Stabile, H., Faure, J., Krousky, E., Masek, K., Pfeifer, M., Skala, J., Dudzak, R., Koenig, M., Tikhonchuk, V., Nicolaï, Ph., & Malka, V. (2009). Direct evidence of gas-induced laser beam smoothing in the interaction, with thin foils. Phys. Plasmas, 16(1), 012703. http://dx.doi.org/10.1063/1.3056396.
  17. 17. Jungwirth, K., Cejnarova, A., Juha, L., Kralikova, B., Krasa, J., Krousky, E., Krupickova, P., Laska, L., Masek, K., Mocek, T., Pfeifer, M., Präg, A., Renner, O., Rohlena, K., Rus, B., Skala, J., Straka, P., & Ullschmied, J. (2001). The Prague Asterix Laser System. Phys. Plasmas, 8, 2495. http://dx.doi.org/10.1063/1.1350569.
  18. 18. Zel’dovich, Ya. B., & Raizer, Yu. P. (2002). Physics of shock waves and high-temperature hydrodynamical phenomena. Dover, New York.
  19. 19. Lindl, J. (1995). Development of indirect-drive approach to inertial confinement fusion and target physics basis for ignition and gain. Phys. Plasmas, 2, 3933–4024.10.1063/1.871025
  20. 20. Ramis, R., Meyer-ter-Vehn, J., & Ramírez, J. (2009). MULTI2D – a computer code for two-dimensional radiation hydrodynamics. Comput. Phys. Commun., 180, 977–994.10.1016/j.cpc.2008.12.033
  21. 21. Aliverdiev, A., Batani, D., Dezulian, R., Vinci, T., Benuzzi-Mounaix, A., Koenig, M., & Malka, V. (2008). Hydrodynamics of laser-produced plasma corona by optical interferometry. Plasma Phys. Control. Fusion, 50, 105013.10.1088/0741-3335/50/10/105013
  22. 22. Aliverdiev, A., Batani, D., Antonelli, L., Jakubowska, K., Dezulian, R., Amirova, A., Gajiev, G., Khan, M., & Pant, H. C. (2014). Use of multilayer targets for achieving off-Hugoniot states. Phys. Rev. E, 89, 053101.10.1103/PhysRevE.89.05310125353898
DOI: https://doi.org/10.1515/nuka-2015-0041 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 213 - 219
Submitted on: Jul 11, 2014
Accepted on: Dec 19, 2014
Published on: Jun 22, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Abutrab A. Aliverdiev, Dimitri Batani, Anise A. Amirova, Roberto Benocci, Riccardo Dezulian, Eduard Krouský, Miroslav Pfeifer, Jiři Skala, Roman Dudzak, Katarzyna Jakubowska, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.