Have a personal or library account? Click to login

Enhanced resonant second harmonic generation in plasma based on density transition

By:
Open Access
|Jun 2015

References

  1. 1. Sharma, J. K., & Parashar, J. (2003). Parametric instability of a lower hybrid wave in a dusty plasma. Indian J. Pure Appl. Phys., 41, 290–294.
  2. 2. Sharma, J. K., Parashar, J., & Mehta, A. S. (2003). Relativistic stimulated Raman scattering in a plasma channel. Indian J. Pure Appl. Phys., 41, 73–76.
  3. 3. Parasher, J., & Pandey, H. D. (1992). Second-harmonic generation of laser radiation in a plasma with a density ripple. IEEE Trans. Plasma Sci., 20, 996–999. DOI: 10.1109/27.199564.10.1109/27.199564
  4. 4. Parashar, J., & Sharma, A. K. (1998). Second harmonic generation by an obliquely incident laser on a vacuum plasma interface. Europhys. Lett., 41, 389. DOI: 10.1209/epl/i1998-00162-1.10.1209/epl/i1998-00162-1
  5. 5. Pramanik, T. K., & Bhattacharya, D. P. (1990). Harmonic generation in semiconductors in the presence of deep repulsive traps. Solid State Commun., 74, 539–542. DOI: 10.1016/0038-1098(90)90342-9.10.1016/0038-1098(90)90342-9
  6. 6. Malka, V., Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Danson, C., Neely, D., & Walsh. F. N. (1997). Second harmonic generation and its interaction with relativistic plasma waves driven by forward Raman instability in underdense plasmas. Plasma Phys., 4, 1127–1131. DOI: 10.1063/1.872201.10.1063/1.872201
  7. 7. Esarey, E., Ting, A., Sprangle, P., Umstadter, D., & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci., 21, 95–104. DOI: 10.1109/27.221107.10.1109/27.221107
  8. 8. Kant, N., Gupta, D. N., & Suk, H. (2011). Generation of second-harmonic radiations of a self-focusing laser from a plasma with density-transition. Phys. Lett. A, 375, 35. DOI: 10.1016/j.physleta.2011.06.062.10.1016/j.physleta.2011.06.062
  9. 9. Tatarakis, M., Watts, I., Beg, F. N., Clark, E. L., Dangor, A. E., Gopal, A., Haines, M. G., Norreys, P. A., Wagner, U., Wei, M. S., Zepf, M., & Krushelnick, K. (2002). Laser technology-measuring huge magnetic fields. Nature, 415, 280–280. DOI: 10.1038/415280a.10.1038/415280a11796997
  10. 10. Kant, N., & Sharma, A. K. (2004). Resonant second-harmonic generation of a short pulse laser in a plasma channel. J. Phys. D-Appl. Phys., 37, 2395. DOI: 10.1088/0022-3727/37/17/009.10.1088/0022-3727/37/17/009
  11. 11. Petrov, E. Y., & Kudrin, A. V. (2010). Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium. Phys. Rev. Lett., 104, 190404-7. DOI: 10.1103/PhysRevLett.104.190404.10.1103/PhysRevLett.104.19040420866950
  12. 12. Kant, N., & Sharma, A. K. (2004). Effect of pulse slippage on resonant second harmonic generation of a short pulse laser in a plasma. J. Phys. D-Appl. Phys., 37, 998–1001. DOI: 10.1088/0022-3727/37/7/007.10.1088/0022-3727/37/7/007
  13. 13. Osman, F., Castillo, R., & Hora, H. (1999). Relativistic and ponderomotive self-focusing at laser–plasma interaction. J. Plasma Phys., 61, 263–273. DOI: 10.1017/S0022377898007417.10.1017/S0022377898007417
  14. 14. Hafizi, B., Ting, A., Sprangle, P., & Hubbard, R. F.. (2000). Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E, 62, 4120. DOI: 10.1103/PhysRevE.62.4120.10.1103/PhysRevE.62.412011088939
  15. 15. Hora, H., & Ghatak, A. K. (1985). New electrostatic resonance driven by laser radiation at perpendicular incidence in superdense plasmas. Phys. Rev. A, 31, 3473. DOI: 10.1103/PhysRevA.31.3473.10.1103/PhysRevA.31.3473
  16. 16. Baton, S. D., Baldies, H. A., Jalinaud, T., & Labaune, C. (1993). Fine-scale spatial and temporal structures of second-harmonic emission from an underdense plasma. Europhys. Lett., 23, 191. DOI: 10.1209/0295-5075/23/3/006.10.1209/0295-5075/23/3/006
  17. 17. Schifano, E., Baton, S. D., Biancalana, V., Giulietti, A., Giulietti, D., Labaune, C., & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction conditions. Laser Part. Beams, 12, 435. DOI: 10.1017/S0263034600008296.10.1017/S0263034600008296
  18. 18. Ganeev, R. A., Chakera, J. A., Raghuramaiah, M., Sharma, A. K., Naik, P. A., & Gupta, P. D. (2001). Experimental study of harmonic generation from solid surfaces irradiated by multipicosecond laser pulses. Phys. Rev. E, 63, 026402. DOI: 10.1103/PhysRevE.63.026402.10.1103/PhysRevE.63.02640211308580
  19. 19. Banerjee, S., Valenzuela, A. R., Shah, R. C., Maksimchuk, A., & Umstadter, D. (2002). High harmonic generation in relativistic laser–plasma interaction. Phys. Plasmas, 9, 2393. DOI: 10.1063/1.1470167.10.1063/1.1470167
  20. 20. Lin, H., Chen, L., & Kieffer, J. C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E, 65, 036414. DOI: 10.1103/PhysRevE.65.036414.10.1103/PhysRevE.65.03641411909269
  21. 21. Mori, M., Takahashi, E., & Kondo, K. (2002). Image of second harmonic emission generated from ponderomotively excited plasma density gradient. Phys. Plasmas, 9, 2812. DOI: 10.1063/1.1481506.10.1063/1.1481506
  22. 22. Kuo, C. C., Pai, C. H., Lin, M. W., Lee, K. H., Lin, J. Y., Wang, J., & Chen, S. Y. (2007). Enhancement of relativistic harmonic generation by an optically preformed periodic plasma waveguide. Phys. Rev. Lett., 98, 033901. DOI: 10.1103/PhysRevLett.98.033901.10.1103/PhysRevLett.98.03390117358683
  23. 23. Kant, N., Sarlach, S., & Singh, H. (2011). Ponderomotive self-focusing of a short laser pulse under a plasma density ramp. Nukleonika, 56(2), 149–153.
  24. 24. Gupta, D. N., Hur, M. S., & Suk, H. (2006). Energy exchange during stimulated Raman scattering of a relativistic laser in plasma. J. Appl. Phys., 100, 103101-5. DOI: 10.1063/1.2384808.10.1063/1.2384808
  25. 25. Singh, A., & Walia, K. (2011). Self-focusing of Gaussian laser beam through collisionless plasmas and its effect on second harmonic generation. J. Fusion Energy, 30, 555–560. DOI: 10.1007/s10894-011-9426-z.10.1007/s10894-011-9426-z
  26. 26. Kant, N., Wani, M. A., & Kumar, A. (2012). Self-focusing of Hermite-Gaussian laser beams in plasma under plasma density ramp. Opt. Commun., 285, 4483–4487. DOI: 10.1063/1.4870080.10.1063/1.4870080
  27. 27. Nanda, V., Kant, N., & Wani, M. A. (2013). Self-focusing of a Hermite-cosh Gaussian laser beam in a magnetoplasma with ramp density profile. Phys. Plasmas, 20, 113109-7. DOI: 10.1063/1.4870080.10.1063/1.4870080
  28. 28. Nanda, V., & Kant, N. (2014). Enhanced relativistic self-focusing of Hermite-Cosh-Gaussian (HChG) laser beam in plasma under density transition. Phys. Plasmas, 21, 042101-6. DOI: 10.1063/1.4870080.10.1063/1.4870080
  29. 29. Nanda, V., & Kant, N. (2014). Strong self-focusing of a cosh-Gaussian Laser Beam in collisionless magnetoplasma under plasma density ramp. Phys. Plasmas, 21, 072111-8. DOI: 10.1063/1.4889862.10.1063/1.4889862
DOI: https://doi.org/10.1515/nuka-2015-0036 | Journal eISSN: 1508-5791 | Journal ISSN: 0029-5922
Language: English
Page range: 355 - 360
Submitted on: Sep 25, 2014
Accepted on: Jan 22, 2015
Published on: Jun 22, 2015
Published by: Institute of Nuclear Chemistry and Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2015 Niti Kant, Vishal Thakur, published by Institute of Nuclear Chemistry and Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.